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Preface

With the remarkable advancement in various branches of science, engineering and technology,
today more than ever before, the study of differential equations has become essential. For,
to have an exhaustive understanding of subjects like physics, mathematical biology, chemical
science, mechanics, fluid dynamics, head transfer, aerodynamics, electricity, waves and electro-
magnetic, the knowledge of finding solution to differential equations is absolutely necessary.
These differential equations may be ordinary or partial. Finding and interpreting their solutions
are at the heart of applied mathematics. A thorough introduction to differential equations is
therefore a necessary part of the education of any applied mathematician, and this book is
aimed at building up skills in this area.

This book on ordinary / partial differential equations is the outcome of a series of lectures deliv-
ered by me, over several years, to the undergraduate or postgraduate students of Mathematics
at various institution. My principal objective of the book is to present the material in such a way
that would immediately make sense to a beginning student. In this respect, the book is written
to acquaint the reader in a logical order with various well-known mathematical techniques in
differential equations. Besides, interesting examples solving JAM / GATE / NET / IAS / SSC
questions are provided in almost every chapter which strongly stimulate and help the students
for their preparation of those examinations from graduate level.

Organization of the book
The book has been organized in a logical order and the topics are discussed in a systematic
manner. It has comprising 21 chapters altogether. In the chapter ??, the fundamental con-
cept of differential equations including autonomous/ non-autonomous and linear / non-linear
differential equations has been explained. The order and degree of the ordinary differential
equations (ODEs) and partial differential equations(PDEs) are also mentioned. The chapter ??
are concerned the first order and first degree ODEs. It is also written in a progressive manner,
with the aim of developing a deeper understanding of ordinary differential equations, includ-
ing conditions for the existence and uniqueness of solutions. In chapter ?? the first order and
higher degree ODEs are illustrated with sufficient examples. The chapter ?? is concerned with
the higher order and first degree ODEs. Several methods, like method of undetermined coeffi-
cients, variation of parameters and Cauchy-Euler equations are also introduced in this chapter.
In chapter ??, second order initial value problems, boundary value problems and Eigenvalue
problems with Sturm-Liouville problems are expressed with proper examples. Simultaneous
linear differential equations are studied in chapter ??. It is also written in a progressive manner
with the aim of developing some alternative methods. In chapter ??, the equilibria, stability
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and phase plots of linear / nonlinear differential equations are also illustrated by including nu-
merical solutions and graphs produced using Mathematica version 9 in a progressive manner.
The geometric and physical application of ODEs are illustrated in chapter ??. The chapter ??
is presented the Total (Pfaffian) Differential Equations. In chapter ??, numerical solutions of
differential equations are added with proper examples. Further, I discuss Fourier transform in
chapter ??, Laplace transformation in chapter 1, Inverse Laplace transformation in chapter 2.
Moreover, series solution techniques of ODEs are presented with Frobenius method in chapter
3, Legendre function and Rodrigue formula in Chapter 4, Chebyshev functions in chapter ??,
Bessel functions in chapter 5 and more special functions for Hypergeometric, Hermite and La-
guerre in chapter ?? in detail. Green function and application of ODE are developed in Chapters
20 and 21 respectively.

Besides, the partial differential equations are presented in chapter ??. In the said chapter,
the classification of linear, second order partial differential equations emphasizing the reasons
why the canonical examples of elliptic, parabolic and hyperbolic equations, namely Laplace’s
equation, the diffusion equation and the wave equation have the properties that they do has
been discussed. Also all chapters are concerned with sufficient examples. In addition, there is
also a set of exercises at the end of each chapter to reinforce the skills of the students.

By reading this book, I hope that the readers will appreciate and be well prepared to use the
wonderful subject of differential equations.

Aim and Scope
When mathematical modelling is used to describe physical, biological or chemical phenomena,
one of the most common results of the modelling process is a system of ordinary or partial
differential equations. Finding and interpreting the solutions of these differential equations is
therefore a central part of applied mathematics, Physics and a thorough understanding of differ-
ential equations is essential for any applied mathematician and physicist. The aim of this book
is to develop the required skills on the part of the reader. The book will thus appeal to under-
graduates/postgraduates in Mathematics, but would also be of use to physicists and engineers.
There are many worked examples based on interesting real-world problems. A large selection
of examples / exercises including JAM/NET/GATE questions is provided to strongly stimulate
and help the students for their preparation of those examinations from graduate level. The
coverage is broad, ranging from basic ODE , PDE to second order ODE’s including Bifurcation
theory, Sturm-Liouville theory, Fourier Transformation, Laplace Transformation and existence
and uniqueness theory, through to techniques for nonlinear differential equations including
stability methods. Therefore, it may be used in research organization or scientific lab.
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Significant features of the book

• A complete course of differential Equations

• Perfect for self-study and class room

• Useful for beginners as well as experts

• More than 500 worked out examples

• Large number of exercises

• More than 600 multiple choice questions with answers

• Suitable for GATE, NET, JAM, JEST, IAS, SSC examinations.

Use of software
The software package Latex version 5.3 was used to write the book. Mathematica version 9 was
used to obtain the phase curve, eigenvalue for checking the stability of a dynamical system and
solve the different equations. Lingo version 8 was also some time used to obtain the numerical
results. All these packages were able to solve problems in material requirements planning and
project management techniques easily.
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Chapter 1

Laplace Transformation
1.1 Introduction
Laplace transform, one of the most important integral transforms is essentially a mathematical
tool which can be used to solve several problems in engineering and science. The said transform
was first introduced by Pierr Simon de Laplace (1749-1827), a French mathematician, in the year
1790 in his work on probability theory. This technique become popular when Heaviside applied
to the solution of an ordinary differential equation referred hereafter as ordinary differential
equation, representing a problem in electrical engineering. Furthermore, the method of Laplace
transform is preferable and advantageous in solving linear ordinary differential equations with
the right-hand side functions involving discontinuous and impulse functions. It also has appli-
cations in quantum mechanics, fractional calculus, etc.

In this chapter, we have presented the formal definition of the Laplace transform and calculate
the Laplace transforms of some elementary functions directly from the definition. The basic
operational properties of the Laplace transforms including convolution and its properties and
the differentiation and integration of Laplace transforms are discussed in some detail. The
Heaviside Expansion Theorem for the Laplace transform are discussed.

1.2 Definition of Laplace transformation
Definition 1.1 Let f (t) be defined for 0 ≤ t < ∞ and let s denoted an arbitrary real variable.

The Laplace transform of f (t), designated by either L
{

f (t)
}

or F(s), is

L
{

f (t)
}

= F(s) =

∫ ∞

0
e−st f (t)dt, ∀s > 0, (1.1)

such that the improper integral converges. Convergence occurs when the limit exists i.e.,

lim
X→∞

∫ X

0
e−st f (t)dt exists. (1.2)

If the limit does not exist, the improper integral diverges and f (t) has no Laplace transform.
When evaluating the integral in equation 1.1, the variable s is treated as a constant because the
integration is with respect to t.
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Comment: Laplace transform is defined for complex value function f (t) and the parameter s
can also be complex. But we restrict our discussion only for case in which f (t) is real value
and s is real.

1.3 Existence of the Laplace Transform

Theorem 1.1 Existence Theorem
Let us consider a functions f (t) which possess finite discontinuities, because in the applications
of Laplace transforms to physical problems these frequently arise. Examples are the unit
Heaviside step function and the unit rectangular wave function illustrated in Fig.-1.1. Such
functions are said to be piecewise continuous.

Figure 1.1:

Definition 1.2 Piecewise continuity; A function f of t is piecewise continuous in the closed
interval a ≤ t ≤ b when the interval can be subdivided into a finite number of subintervals,
a ≤ t ≤ t1, t1 ≤ t ≤ t2, · · · , tn−1 ≤ t ≤ b such that
(i) f (t) is continuous in each open interval

tr < t < tr+l, r = 0, 1, · · · ,n − 1, t0 = a, tn = b.

(ii) f (t) tends to a finite limit as t tends to each end point from within the interval, i.e. for
small ε > 0

lim
ε→0

F(tr + B) = F(tr+), lim
ε→0

f (tr+1 − ε) = F(tr+1−)

exist for all r = 0, 1, · · · ,n − 1.

A function which is piecewise continuous in a finite interval is integrable over that inter-
val. The next step is to obtain sufficient conditions on f (t) in order that L{ f (t)} exists. Since∫ ∞

T e−(s−σ)tdt, (T ≥ 0) converges for s > σ, we can use this fact to explore the convergence of the
Laplace transform integral

∫ ∞
0 e−st f (t)dt when |e−σt f (t)| < M for all t ≥ T, T and M being positive

constants.
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Definition 1.3 Exponential Order A function f of t is of exponential order σ as t → ∞ if
constants σ,M(> 0) and T(> 0) can be found such that

|e−σt f (t)| < M or | f (t)| < Meσt, for all t ≥ T > 0

Equivalently, we write
F(t) = O(eσt) as t→ 0.

Existence of the Laplace Transform

A function f has a Laplace transform whenever it is of exponential order. That is, there must
be a real number B such that

lim
t→∞

∣∣∣ f (t)e−Bt
∣∣∣ = 0 (1.3)

As an example, every exponential function Aeαt has a Laplace transform for all finite values of
A and α. The canonical form of an exponential function, as typically used in signal processing,
is

a(t) = Ae−t/τ, t ≥ 0

where τ is called the time constant of the exponential. A is the peak amplitude. The time
constant is the time it takes to decay by 1/e , i.e.,

a(τ)
a(0)

=
1
e
.

Sufficient Condition for existence of Laplace transform:

Let f be a piecewise continuous function in [0, α) and is of exponential order. Then Laplace
transform F(s) of f exists for s > c, where c is a real number that depends on f .

Proof. Since f is of exponential order, there exist a, M, σ such that | f (t)| ≤Meσt for t ≥ A. Now we

write I =
∫ ∞

0 f (t)e−stdt = I1+I2 where I1 =
∫ A

0 f (t)e−stdt and I2 =
∫ ∞

A f (t)e−stdt. Since f is piecewise
continuous, I1 exists. For the second integral I2, we note that for t ≥ A, |e−st f (t)| ≤ Me−(s−σ)t.
Thus

∫ ∞
A | f (t)e−st|dt ≤

∫ ∞
A e−(s−σ)tdt ≤

∫ ∞
0 e−(s−σ)tdt = M

s−σ , s > σ. Since the integral in I2 converges
absolutely for s > σ, I2 converges for s > σ. Thus both I1 and I2 exist and hence I exists for s > σ.
Comment The above condition is not necessary. For example consider f (t) = 1√

t
which is not

piecewise continuous in [0, ∞). But
∫ ∞

0
e−st√

t
=

√
π
s , s > 0.

Example 1.1 If f (t) = 1 for t > 0 and then L{1} = 1
s , s > 0.

Solution: From the definition of Laplace Transform, we have

L
{

f (t)
}

=

∫ ∞

0
e−st f (t)dt

⇒ L
{
1
}

= lim
X→∞

∫ X

0
e−st · 1dt = lim

X→∞

[
− e−sX

s
+

1
s

]
=

1
s
, s > 0
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Example 1.2 If f (t) = eat for t > 0 and then L
{
eat

}
= 1

s−a , s > a.

Solution: From the definition of Laplace Transform, we have

L
{

f (t)
}

=

∫ ∞

0
e−st f (t) dt

⇒ L
{
eat

}
= lim

X→∞

∫ X

0
e−st · eat dt

= lim
X→∞

∫ X

0
e−(s−a)tdt = lim

X→∞

[
− e−(s−a)X

s − a
+

1
s − a

]
=

1
s − a

, ∵ s > a

Example 1.3 If f (t) = t for t > 0 and then L
{
t
}

= 1
s2 , s > 0.

Solution: From the definition of Laplace Transform, we have

L
{

f (t)
}

=

∫ ∞

0
e−st f (t)dt

⇒ L
{
t
}

= lim
X→∞

∫ X

0
e−st · t dt = lim

X→∞

[
− X

e−sX

s
− e−sX

s2 +
1
s2

]
=

1
s2 , s > 0

Example 1.4 If f (t) = tn for t > 0, then L
{
tn
}

=
Γ(n+1)

sn+1 ,n > −1, s > 0.

Solution: From the definition of Laplace Transform, we have

L{ f (t)} =

∫ ∞

0
e−st f (t)dt

⇒ L
{
tn
}

= lim
X→∞

∫ X

0
e−st · tn dt

= lim
X→∞

∫ sX

0

zn

sn e−z dz
s

[
putting st = z, then dt =

dz
s

]

=
1

sn+1

∫ ∞

0
z(n+1)−1 e−z dz

=
Γ(n + 1)

sn+1 , s > 0,n > −1,
[

Since Γ(n) =

∫ ∞

0
xn−1 e−x dx

]

Example 1.5 If f (t) = sin at, where a is a real constant, then, L
{

sin at
}

= a
s2+a2 , s > 0.
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Solution: From the definition of Laplace Transform, we have

L{ f (t)} =

∫ ∞

0
e−st f (t)dt

⇒ L{sin at} = lim
X→∞

∫ X

0
e−st sin at dt = lim

X→∞

∫ X

0
e−st eiat − e−iat

2i
dt

=
1
2i

lim
X→∞

∫ X

0
[e−t(s−ia) − e−t(s+ia)] dt

=
1
2i

lim
X→∞

[
− e−X(s−ia)

(s − ia)
+

1
s − ia

+
e−X(s+ia)

(s + ia)
− 1

s + ia

]

=
1
2i

[ 1
s − ia

− 1
s + ia

]
=

a
s2 + a2 , s > 0.

Example 1.6 If f (t) = cos at, where a is a real constant, then,

L
{

cos at
}

=
s

s2 + a2 , s > 0.

Solution: From the definition of Laplace Transform, we have

L{ f (t)} =

∫ ∞

0
e−st f (t)dt

⇒ L{cos at} = lim
X→∞

∫ X

0
e−st cos at dt = lim

X→∞

∫ X

0
e−st eiat + e−iat

2
dt

=
1
2

lim
X→∞

∫ X

0
[e−t(s−ia) + e−t(s+ia)] dt

=
1
2

lim
X→∞

[
− e−X(s−ia)

(s − ia)
+

1
s − ia

− e−X(s+ia)

(s + ia)
+

1
s + ia

]

=
1
2

[ 1
s − ia

+
1

s + ia

]
=

s
s2 + a2 , s > 0

Example 1.7 If f (t) = sinh at, where a is a real constant, then, L
{

sinh at
}

= a
s2−a2 , s > |a|.

Solution: From the definition of Laplace Transform, we have

L{ f (t)} =

∫ ∞

0
e−st f (t)dt

⇒ L{sinh at} = lim
X→∞

∫ X

0
e−st sinh at dt = lim

X→∞

∫ X

0
e−st eat − e−at

2
dt

=
1
2

lim
X→∞

∫ X

0
[e−t(s−a) − e−t(s+a)] dt

=
1
2

lim
X→∞

[
− e−X(s−a)

(s − a)
+

1
s − a

+
e−X(s+a)

(s + a)
− 1

s + a

]

=
1
2

[ 1
s − a

− 1
s + a

]
=

a
s2 − a2 , s > |a|
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Example 1.8 If f (t) = cosh at, where a is a real constant, then, L
{

cosh at
}

= s
s2−a2 , s > |a|.

Solution: From the definition of Laplace Transform, we have

L{ f (t)} =

∫ ∞

0
e−st f (t)dt

⇒ L{cosh at} = lim
X→∞

∫ X

0
e−st cosh at dt = lim

X→∞

∫ X

0
e−st eat + e−at

2
dt

=
1
2

lim
X→∞

∫ X

0
[e−t(s−a) + e−t(s+a)] dt

=
1
2

lim
X→∞

[
− e−X(s−a)

(s − a)
+

1
s − a

− e−X(s+a)

(s + a)
+

1
s + a

]

=
1
2

[ 1
s − a

+
1

s + a

]
=

s
s2 − a2 , s > |a|.

1.4 Basic Properties of Laplace transformation

Theorem 1.2 Uniqueness of Laplace transform Let f (t) and g(t) be two functions such that
F(s) = G(s) for all s > k. Then f (t) = g(t) at all t where both are continuous.

Property 1.1 Linearity Property:

L
{
c1 f1(t) + c2 f2(t)

}
= c1L

{
f1(t)

}
+ c2L

{
f2(t)

}
= c1F1(s) + c2F2(s).

Proof: By the definition of Laplace Transformation

L
{
c1 f1(t) + c2 f2(t)

}
=

∫ ∞

0

{
c1 f1(t) + c2 f2(t)

}
e−stdt

=

∫ ∞

0

{
c1 f1(t)

}
e−stdt +

∫ ∞

0

{
c2 f2(t)

}
e−stdt

= c1

∫ ∞

0

{
f1(t)

}
e−stdt + c2

∫ ∞

0

{
f2(t)

}
e−stdt

= c1L
{

f1(t)
}

+ c2L
{

f2(t)
}

= c1F1(s) + c2F2(s) ( Hence proved)

Property 1.2 Change of scale property: If L
{

f (t)
}

= F(s), then

L
{

f (at)
}

=
1
a

F
( s

a

)
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Proof: By the definition of Laplace Transformation

L
{

f (t)
}

=

∫ ∞

0
f (t)e−stdt

⇒ L
{

f (at)
}

= lim
X→∞

∫ X

0
f (at)e−stdt put at = y, dt =

dy
a

= lim
X→∞

∫ X

0
f (y)e−

s
a y dy

a

=
1
a

∫ ∞

0
f (y)e−

s
a ydy =

1
a

F
( s

a

)
( Hence proved)

Property 1.3 First shifting property: If L
{

f (t)
}

= F(s), then

L
{
eat f (t)

}
= F(s − a) for s > a

Proof: By the definition of Laplace Transformation

L
{

f (t)
}

=

∫ ∞

0
f (t)e−stdt ⇒ L

{
eat f (t)

}
= lim

X→∞

∫ X

0

{
eat f (t)

}
e−stdt

= lim
X→∞

∫ X

0
f (t)e−(s−a)tdt =

∫ ∞

0
f (t)e−(s−a)tdt, s − a > 0

= F(s − a) ( Hence proved)

1.5 Operational Rules of Laplace Transforms

Theorem 1.3 Division rule:
If L

{
f (t)

}
= F(s), then L

{
f (t)
t

}
=

∫ ∞
s F(s)ds, provided lim

t−→∞
f (t)
t exists finitely.

Proof: By the definition of Laplace Transformation

F(s) = L
{

f (t)
}

=

∫ ∞

0
f (t)e−stdt ⇒

∫ ∞

s
F(s)ds =

∫ ∞

s

{∫ ∞

0
f (t)e−stdt

}
ds

Interchanging the order of integration, we get
∫ ∞

s
F(s)ds =

∫ ∞

0

{∫ ∞

s
f (t)e−stds

}
dt =

∫ ∞

0
f (t)

{∫ ∞

s
e−stds

}
dt

=

∫ ∞

0
f (t)

{
lim

X→∞

∫ X

s
e−stds

}
dt =

∫ ∞

0
f (t)

{
lim

X→∞

[ e−st

−t

]X

s

}
dt

=

∫ ∞

0

f (t)
t

e−stdt = L
{ f (t)

t

}

⇒ L
{ f (t)

t

}
=

∫ ∞

s
F(s)ds ( Hence proved)
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Theorem 1.4 Multiplication rule for tn:

If L
{

f (t)
}

= F(s), then L
{
tn f (t)

}
= (−1)n dn

dsn

(
F(s)

)
, where n is positive integer

Proof: By the definition of Laplace Transformation

F(s) = L
{

f (t)
}

=

∫ ∞

0
f (t)e−stdt

⇒ dF(s)
ds

=
d
ds

∫ ∞

0
f (t)e−stdt =

∫ ∞

0
f (t)(−t)e−stdt

= −
∫ ∞

0

{
t f (t)

}
e−stdt = −L

{
t f (t)

}

⇒ L
{
t f (t)

}
= −dF(s)

ds

Similarly, L
{
t2 f (t)

}
= L

{
t · t f (t)

}
= − d

ds
L
{
t f (t)

}
= (−1)2 d

ds

{dF
ds

}
= (−1)2 d2F(s)

ds2

Hence the theorem is true for n = 1, 2. Let the theorem is true for n = m. Then

L
{
tm f (t)

}
= (−1)m dm

dsm

(
F(s)

)

⇒
∫ ∞

0

{
tm f (t)

}
e−stdt = (−1)m dm

dsm

(
F(s)

)

⇒ d
ds

∫ ∞

0

{
tm f (t)

}
e−stdt = (−1)m dm+1

dsm+1

(
F(s)

)

⇒
∫ ∞

0
(−t)

{
tm f (t)

}
e−stdt = (−1)m dm+1

dsm+1

(
F(s)

)

⇒ −
∫ ∞

0

{
tm+1 f (t)

}
e−stdt = (−1)m dm+1

dsm+1

(
F(s)

)

⇒ L
{
tm+1 f (t)

}
= (−1)m+1 dm+1

dsm+1

(
F(s)

)

This shows that the theorem is true for n = m + 1. Hence by Mathematical induction, we can
say that the theorem is true for all integer n.

Theorem 1.5 Laplace transform of first order derivative:

If L
{

f (t); s
}

= F(s), then L
{

f ′(t); s
}

= sF(s) − f (0), provided f (t) is exponential order.
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Proof: By the definition of Laplace Transformation

L
{

f (t); s
}

=

∫ ∞

0
f (t)e−stdt

⇒ L
{

f ′(t); s
}

=

∫ ∞

0
f ′(t)e−stdt = lim

X→∞

∫ X

0
f ′(t)e−stdt

= lim
X→∞

{[
e−st f (t)

]X

0
+ s

∫ X

0
f (t)e−stdt

}

= lim
X→∞

{[
e−sX f (X) − f (0)

]
+ s

∫ X

0
f (t)e−stdt

}

= 0 − f (0) + sF(s)
[
∵ lim

X→∞
e−sX f (X) = 0

]

= sF(s) − f (0)

Theorem 1.6 Laplace transform of n-th order derivative:

If L
{

f (t); s
}

= F(s), then

L
{

f ′′(t); s
}

= s2F(s) − s f (0) − f ′(0)

L
{

f ′′′(t); s
}

= s3F(s) − s2 f (0) − s f ′(0) − f ′′(0)

· · ·
L
{

f n(t); s
}

= snF(s) − sn−1 f (0) − sn−2 f ′(0) − · · · − f n−1(0)

provided f (t) is exponential order.

Proof. Since L
{

f ′(t); s
}

= sF(s) − f (0)

L
{

f ′′(t); s
}

= s L
{

f ′(t); s
}
− f ′(0) = s(sF(s) − f (0)) − f ′(0)

= s2F(s) − s f (0) − f ′(0)

L
{

f ′′′(t); s
}

= s L
{

f ′′(t); s
}
− f ′′(0) = s(s2F(s) − s f (0) − f ′(0)) − f ′′(0)

= s3F(s) − s2 f (0) − s f ′(0)) − f ′′(0)

Thus in general,

L
{

f n(t); s
}

= snF(s) − sn−1 f (0) − sn−2 f ′(0) − · · · − f n−1(0)
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Theorem 1.7 Laplace transform of partial derivative:
If u is a function of two variable x, t and U(x, s) = L[u(x, t); s], then prove that

(i) L
{
∂u
∂t

; s
}

= sU(x, s) − u(x, 0)

(ii) L
{
∂2u
∂t2 ; s

}
= s2U(x, s) − s u(x, 0) − ut(x, 0)

(iii) L
{
∂u
∂x

; s
}

=
dU(x, s)

dx

(iv) L
{
∂2u
∂x2 ; s

}
=

d2U(x, s)
dx2

(v) L
{
∂2u
∂x∂t

; s
}

= s
dU(x, s)

dx
− du(x, 0)

dx
provided f (t) is exponential order.

Proof: By the definition of Laplace Transformation, we have

(i)L
{
∂u
∂t

; s
}

=

∫ ∞

0

∂u
∂t

e−stdt = lim
X→∞

∫ X

0

∂u
∂t

e−stdt

= lim
X→∞

{[
e−stu(x, t)

]X

0
+ s

∫ X

0
u(x, t)e−stdt

}

= −u(x, 0) + s
∫ ∞

0
u(x, t)e−stdt

Therefore, L
{
∂u
∂t

; s
}

= sU(x, s) − u(x, 0)

(ii)L
{
∂2u
∂t2 ; s

}
= L

{
∂v
∂t

; s
}
, v =

∂u
∂t

= s
{
L(v; s)

}
− v(x, 0) = s

{
sU(x, s) − u(x, 0)

}
− ut(x, 0)

Therefore, L
{
∂2u
∂t2 ; s

}
= s2U(x, s) − s u(x, 0) − ut(x, 0)

(iii)L
{
∂u
∂x

; s
}

=

∫ ∞

0

∂u
∂x

e−stdt

=
d
dx

∫ ∞

0
e−stu(x, t) dt =

dU(x, s)
dx

Therefore, L
{
∂u
∂x

; s
}

=
dU(x, s)

dx

(iv)L
{
∂2u
∂x2 ; s

}
=

∫ ∞

0

∂2u
∂x2 e−stdt

=
d2

dx2

∫ ∞

0
e−stu(x, t) dt =

d2U(x, s)
dx2

Therefore, L
{
∂2u
∂x2 ; s

}
=

d2U(x, s)
dx2
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(v) L
{
∂2u
∂x ∂t

; s
}

=

∫ ∞

0

∂2u
∂x ∂t

e−stdt

=
d

dx

∫ ∞

0

∂u
∂t

e−st dt

=
d

dx

[
sU(x, s) − u(x, 0)

]

= s
dU(x, s)

dx
− du(x, 0)

dx

Therefore, L
{
∂2u
∂x∂t

; s
}

= s
dU(x, s)

dx
− du(x, 0)

dx

Thus, we show that from the above results that the partial derivatives are transformed into
ordinary derivatives.

Theorem 1.8 Laplace Transform of Integrals: If L
{

f (t)
}

= F(s), then

L
{∫ t

0
f (ξ)dξ

}
=

F(s)
s
,

provided f (t) is exponential order.

Proof: Let G(t) =
∫ t

0 f (ξ)dξ. Therefore G′(t) = f (t) and G(0) = 0. Taking Laplace Transformation
in both sides of G′(t) = f (t), we get

L
{
G′(t)

}
= L

{
f (t)

}
⇒ sG(s) − G(0) = F(s) [∵ G(0) = 0]

⇒ G(s) =
F(s)

s
⇒ L

{∫ t

0
f (ξ)dξ

}
=

F(s)
s

Theorem 1.9 Laplace transform of Periodic function:
If f be a periodic function with period T(> 0), then

L
{

f (t)
}

=
1

1 − e−sT

∫ T

0
e−st f (t)dt.
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Proof: By the definition of Laplace Transformation

L
{

f (t)
}

=

∫ ∞

0
f (t)e−stdt =

∫ T

0
f (t)e−stdt +

∫ 2T

T
f (t)e−stdt +

∫ 3T

2T
f (t)e−stdt + · · ·

=

∞∑

i=1

∫ iT

(i−1)T
f (t)e−stdt, putting t = u + (i − 1)T, dt = du

=

∞∑

i=1

∫ T

0
f (u + (i − 1)T)e−s(u+(i−1)T)du

=

∞∑

i=1

∫ T

0
f (u + (i − 1)T)e−s(u+(i−1)T)du ∵ f (u + (i − 1)T) = f (u)

=

∞∑

i=1

e−s(i−1)T)
∫ T

0
f (u)e−sudu ∵

∞∑

i=1

e−s(i−1)T) =
1

1 − e−sT

=
1

1 − e−sT

∫ T

0
f (u)e−sudu

Example 1.9 Given that

f (t) =

{
sin t, 0 ≤ t < π
0, π ≤ t < 2π

and extended periodically with period 2π. Find L
{

f (t)
}
?.

Solution: We know that

L
{

f (t)
}

=
1

1 − e−sT

∫ T

0
f (u)e−stdt =

1
1 − e−2πs

{∫ π

0

(
sin t

)
e−stdt +

∫ 2π

π

(
0
)
e−stdt

}

=
1

1 − e−2πs

{∫ π

0

(
sin t

)
e−stdt

}
=

1
1 − e−2πs

[ e−st

s2 + 1

{
− s sin t − cos t

}]π
0

=
1

1 − e−2πs ×
e−πs + 1
s2 + 1

=
1

(1 − e−πs)(s2 + 1)

Theorem 1.10 Convolution theorem: If f ∗ g =
∫ u

0 f (u − t)g(t)dt, then

L
{

f ∗ g
}

= F(s) · G(s).

Proof. From the definition of the Laplace transform, we know that

F(s) G(s) = [
∫ ∞

0
f (t)e−stdt] [

∫ ∞

0
g(v)e−svdv]

=

∫ ∞

0

∫ ∞

0
e−s(t+v) f (t)g(v)dt dv

=

∫ ∞

0
g(t){

∫ ∞

0
e−s(t+v) f (v) dv} dt
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Let t + v = u in the inner integral. Then

F(s) G(s) =

∫ ∞

0
g(t){

∫ ∞

t
e−su f (u − t) du} dt =

∫ ∞

0
{
∫ u

0
e−su f (u − t)g(t) dt} du

=

∫ ∞

0
e−su{

∫ u

0
f (u − t)g(t) dt} du = L[

∫ u

0
f (u − t)g(t) dt; u]

Theorem 1.11 Initial and final value theorem: If f (t) and f ′(t) are Laplace transformable and
F(s) is the Laplace transform of f (t), then the behavior of f (t) in the neighborhood of t = 0
corresponds to the behavior of sF(s) in the neighborhood of s = ∞. Mathematically,

lim
t→0

f (t) = lim
s→∞

s F(s).

Proof. Since L
{

f ′(t); s
}

= sL
{

f (t); s
}
− f (0)

So
∫ ∞

0
f ′(t) e−stdt = sF(s) − f (0)

Taking the limit as s→∞ on both sides of the above equation, we have

lim
s→∞

∫ ∞

0
e−st f ′(t)dt = lim

s→∞
sF(s) − lim

s→∞
f (0) (1.4)

Since s is independent of t, so we take the limit before integrating the left-hand side of equation
(1.4), thus getting

lim
s→∞

∫ ∞

0
e−st f ′(t)dt =

∫ ∞

0
[lim
s→∞

e−st f ′(t)]dt = 0 (1.5)

and using equation (1.5), the equation (1.4) becomes

lim
t→∞

s F(s) = f (0) = lim
t→0

f (t). Hence the theorem.

Example 1.10 Verify initial value theorem for the function f defined by f (t) = 1 + e−t.

Solution: Given f (t) = 1 + e−t, we have

F(s) = L
{

f (t); s
}

= L
{
1; s

}
+ L

{
e−t; s

}
=

1
s

+
1

s + 1

So, s F(s) = 1 +
s

s + 1

∴ lim
s→∞

s F(s) = 2 = f (0) = lim
t→0

f (t). Hence the result.
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Theorem 1.12 The Final value theorem states:
If f (t) and f ′(t) are Laplace transformable and F(s) is the Laplace transform of f (t), then

the behavior of f (t) in the neighborhood of t = ∞ corresponds to the behavior of sF(s) in the
neighborhood of s = 0. Mathematically,

lim
t→∞

f (t) = lim
s→0

s F(s).

Proof. Since L
{

f ′(t); s
}

= sL
{

f (t); s
}
− f (0)

So
∫ ∞

0
f ′(t) e−stdt = sF(s) − f (0)

Taking the limit as s→ 0 on both sides of the above equation, we have

lim
s→0

∫ ∞

0
e−st f ′(t)dt = lim

s→0
sF(s) − lim

s→0
f (0) (1.6)

But
∫ ∞

0
lim
s→0

e−st f ′(t)dt =

∫ ∞

0
f ′(t)dt = lim

t→∞
f (t) − f (0) (1.7)

Using the equations (1.6)-(1.7), we get’ lim
s→0

s F(s) = lim
t→∞

f (t). (1.8)

Example 1.11 Verify final value theorem for the function f defined by f (t) = e−t.

Solution: Given f (t) = e−t, we have

F(s) = L
{

f (t); s
}

= L
{
e−t; s

}
=

1
s + 1

So, s F(s) =
s

s + 1
∴ lim

s→0
s F(s) = 0 and lim

t→∞
f (t) = 0.

So, lim
s→0

s F(s) = lim
t→∞

f (t). Hence the result.

1.6 The Heaviside Step Function

The Heaviside step function is denoted and defined by

H(t − a) =

{
0, t < a
1, t ≥ a, a ≥ 0

where a is a real number, and is depicted in Figure 1.2.

The Laplace transform of H(t − a) is given by

L
{
H(t − a)

}
=

∫ ∞

0
e−stH(t − a)dt =

∫ a

0
e−stH(t − a)dt +

∫ ∞

a
e−stH(t − a)dt

=

∫ a

0
e−st · 0 dt + lim

X→∞

∫ X

a
e−st · 1 dt = 0 + lim

X→∞

[ e−st

−s

]X

a
=

e−as

s
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Figure 1.2: Heaviside step function

Property 1.4 (Second Shifting property:) If L
{

f (t)
}

= F(s), Prove that

L
{

f (t − a)H(t − a)
}

= e−asF(s), s > a > 0.

Proof. L
{

f (t − a) ·H(t − a)
}

=

∫ ∞

0
e−st f (t − a) ·H(t − a) dt

=

∫ ∞

−a
e−s(x+a) f (x)H(x) dx, taking t − a = x

= e−as
∫ ∞

0
e−st f (t) dt = e−asF(s)

Example 1.12 The Heaviside step function is very useful in dealing with functions with
discontinuities or piecewise smooth functions. The following are some examples:(i - iv)

(i) f (t) =

{
f1(t), t < t0
0, t ≥ t0

(ii) f (t) =

{
0, t < t0
f2(t), t ≥ t0

= f1(t)
[
1 −H(t − t0)

]
= f2(t)H(t − t0)

Figure 1.3: Graph of function i Figure 1.4: Graph of function ii
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(iii) f (t) =

{
f1(t), t < t0
f2(t), t ≥ t0

(iv) g(t) =



0, t < a
g(t), a ≤ t < b
0, t ≥ b

=



f1(t) +
[

f2(t) − f1(t)
]
· 0, t < t0

f1(t) +
[

f2(t) − f1(t)
]
· 1, t ≥ t0

= G(t)
[
H(t − a) −H(t − b)

]

= f1(t) +
[

f2(t) − f1(t)
]
H(t − t0)

Figure 1.5: Graph of function iii Figure 1.6: Graph of function iv

If function f has nonzero values only in the range of a < t < b as shown in the following
Figure-1.6, than it can be expressed as since

H(t − a) −H(t − b) =



0, t < a
1, a ≤ t < b
0, t ≥ b

As a generalization, function f of the following form can be easily written in terms of the
Heaviside step function

f (t) =



0, t < t0
f1, t0 ≤ t < t1
f2, t1 ≤ t < t2
· · ·
fn, tn−1 ≤ t < tn
0, t ≥ tn

= f1(t)
[
H(t − t0) −H(t − t1)

]
+ f2(t)

[
H(t − t1) −H(t − t2)

]
+ · · · +

+ fn(t)
[
H(t − tn−1) −H(t − tn)

]
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1.7 Some Important Results

f (t) L
{

f (t)
}

= F(s) f (t) L
{

f (t)
}

= F(s)

1 1
s , s > 0 t 1

s2 , s > 0
eat 1

s−a , s > a tn Γ(n+1)
sn+1 , s > 0,n > −1

sin at a
s2+a2 , |s| > a cos at s

s2+a2 , |s| > a
sinh at a

s2−a2 , |s| > a cosh at s
s2−a2 , |s| > a

1.8 Worked Out Examples

Example 1.13 Find L[ f (t)],

where f (t) =


sin

(
t − π

3

)
, t > π

3

0, t ≤ π
3

Solution: Using the second shifting property of LT,

g(t) =

{
f (t − a), t > a
0, t ≤ a

Then, L
{

g(t)
}

= e−asF(s), where L
{

f (t)
}

= F(s), here a =
π
3

= e−
π
3 sL

{
sin t

}
= e−

π
3 s 1

s2 + 1

Example 1.14 Find L[ f (t)], where f (t) =

{
e−t, 0 ≤ t < 2
0, otherwise

Solution: By the definition of LT

L
{

f (t)
}

=

∫ ∞

0
e−st f (t)dt

=

∫ 2

0
e−ste−tdt =

∫ 2

0
e−(1+s)tdt

=
[
− e−(1+s)t

1 + s

]2

0
=

1 − e−2(1+s)

1 + s
.

Example 1.15 Find L[ f (t)],

where f (t) =



0, t < 1
t, 1 ≤ t < 2
0, t ≥ 2
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Solution: By the definition of LT

L
{

f (t)
}

=

∫ ∞

0
e−st f (t)dt

=

∫ 2

1
e−sttdt =

[
t
est

s
− e−st

s2

]2

1

=
(s + 1)e−s − (2s + 1)e−2s

s2

Example 1.16 Using the linearity of the Laplace transform, calculate the Laplace transform of

f (t) = sinh(at) =
eat − e−at

2

Solution: L(sinh(at)) = L
(

eat − e−at

2

)
=

1
2

L(eat) − 1
2

L(e−at)

=
1
2

1
s − a

− 1
2

1
s + a

=
1
2

s + a − (s − a)
s2 − a2 =

a
s2 − a2 (1.9)

Example 1.17 Using the shift theorem find the Laplace transform of

f (t) = e2tt2

Solution: By the first shift theorem,

L
(
e−at f (t)

)
= F(s − a) (1.10)

where L( f ) = F(s). Now, we know that

L
(
t2
)

=
2!
s3 =

2
s3 (1.11)

so, by the shift theorem

L
(
e2tt2

)
=

2
(s − 2)3 (1.12)

Example 1.18 Find the Laplace transform

y′′ + 4y′ + 8y = cos 2t (1.13)

Given that y = 2 and y′ = 1 when t = 0.

Solution: Applying Laplace transform in both sides with respect to t in the equation (1.13), we
obtain {s2Y(s)− sy(0)− y′(0)}+ 4{sY(s)− y(0)}+ 8Y(s) = s

s2+4 . Using the initial conditions, we get,
s2Y(s) − 2s − 1 + 4sY(s) − 8 + 8Y(s) = s

s2+4 or (s2 + 4s + 8)Y(s) = s
s2+4 + 2s + 9.

Therefore Y(s) =
1
20
× s

s2 + 4
+

1
5
× 1

s2 + 4
− 1

20
× (s + 2) − 2

(s + 2)2 + 22

− 2
5
× 1

(s + 2)2 + 22 +
2(s + 2) − 4
(s + 2)2 + 22 +

9
(s + 2)2 + 22



LAPLACE TRANSFORMATION 19

Example 1.19 Find the Laplace transform of both side of the identity

d
dt

cosh 3t = 3 sinh 3t

and verify that you get the same answer on each side. The idea is that you do the right hand
side using the table entry for sinh(3t) and the left hand side using the formula for f ′ with
f = cosh(3t). cosh(0) = 1 by the way.

Solution: We know that

L(sinh at) =
a

s2 − a2 , L(cosh at) =
s

s2 − a2 (1.14)

and cosh 0 = 1 so

L
(

d
dt

cosh 3t
)

= L (3 sinh 3t)

sL (cosh 3t) − 1 = 3
3

s2 − 9

s
s

s2 − 9
− 1 = 3

3
s2 − 9

s
s

s2 − 9
− s2 − 9

s2 − 9
=

9
s2 − 9

9
s2 − 9

=
9

s2 − 9
(1.15)

Example 1.20 Find the Laplace transform of both sides of the differential equation

2
d f
dt

= 1

with initial conditions f (0) = 4. By solving the resulting equations find F(s). Based on the
Laplace trasforms you know, decide what f (t) is?

Solution: Using linearity of L, plus the property of Laplace transforms of derivatives, we get

L
(
2

d f
dt

)
= L(1)⇒ 2L

(
d f
dt

)
=

1
s

2sF(s) − 8 =
1
s

(1.16)

This means that F(s) =
4
s

+
1

2s2

and, since, L(tn) = n!/sn+1

∴ f (t) = 4 +
1
2

t (1.17)

Example 1.21 Find the convolution ( f ∗ g)(t) when f (t) = t, g(t) = e2t (t ≥ 0).
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Solution: From the definition of convolutions

( f ∗ g)(t) =

∫ t

0
f (τ)g(t − τ) dτ =

∫ t

0
τe2(t−τ) dτ

=

∫ t

0
τe2te−2τ dτ = e2t

∫ t

0
τe−2τ dτ

Let u = τ, dv = e−2τ dτ then du = dτ, v = − 1
2 e−2τ. Use integration by parts, we get,

e2t
∫ t

0
u dv = e2t

(
[uv]t

0 −
∫ t

0
v du

)

= e2t
([
−τ

2
e−2τ

]t

0
−

∫ t

0
−1

2
e−2τ dτ

)

= e2t
(
− t

2
e−2t + 0 +

1
2

∫ t

0
e−2τ dτ

)

= − t
2

+
e2t

2

[
−1

2
e−2τ

]t

0

= − t
2

+
e2t

2

(
−1

2
e−2t +

1
2

)

= − t
2
− 1

4
+

1
4

e2t

Example 1.22 Use the convolution theorem to find the function f with

L( f ) =
1

s2(s − 4)
. (1.18)

Solution: We know L(t)) = 1
s2 and L(e4t) = 1

s−4 . From the convolution theorem, we see

L( f ) =
1

s2(s − 4)
= L(t)L(e4t) = L(t ∗ e4t)

so that f (t) is the convolution t ∗ e4t.

f (t) =

∫ t

0
τe4(t−τ) dτ

=

∫ t

0
τe4te−4τ dτ = e4t

∫ t

0
τe−4τ dτ
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Let U = τ, dV = e−4τ dτ, then dU = dτ, V = − 1
4 e−4τ . Use integration by parts, we get

e4t
∫ t

0
U dV = e4t

(
[UV]t

0 −
∫ t

0
V dU

)

= e4t
([
−τ

4
e−4τ

]t

0
−

∫ t

0
−1

4
e−4τ dτ

)

= e4t
(
− t

4
e−4t + 0 +

1
4

∫ t

0
e−4τ dτ

)

= − t
4

+
e4t

4

[
−1

4
e−4τ

]t

0

= − t
4

+
e4t

4

(
−1

4
e−4t +

1
4

)

= − t
4
− 1

16
+

1
16

e4t

Example 1.23 Find the Laplace transform to one dimensional Heat equation ∂u
∂t = 2 ∂

2u
∂x2 with

BCS: u(0, t) = 0, u(5, t) = 0, t > 0

IC: u(x, 0) = 10 sin 4πx, 0 < x < 5

Solution: Applying Laplace transform in both sides in the equation ∂u
∂t = 2 ∂

2u
∂x2 , we get

L
{
∂u
∂t

}
= 2L

{
∂2u
∂x2

}

⇒ 2
d2U(x, s)

dx2 = sU(x, s) − u(x, 0)

⇒ 2
d2U(x, s)

dx2 = sU(x, s) − 10 sin 4πx

⇒ d2U(x, s)
dx2 − s

2
U(x, s) = −5 sin 4πx (1.19)

∴ the Laplace transform of the given heat equation is d2U(x,s)
dx2 − s

2 U(x, s) = −5 sin 4πx.

Example 1.24 Find the Laplace transform

dx
dt
− y = et,

dy
dt

+ x = sin t. Given that x(0) = 1 and y(0) = 0. (1.20)

Solution: Applying Laplace transform in both equations and using the notations X = L[x; s], Y =

L[y; s], we get, sX − x(0) − Y = 1
s−1 , sY − y(0) + X = 1

s2+1 . Using the given initial conditions, the
Laplace transform of the given equations is

sX − Y =
s

s − 1
(1.21)

X + sY =
1

s2 + 1
(1.22)
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1.9 Multiple Choice Questions(MCQ)

1. Given that F(S) is the one side Laplace transformation of f (t), then Laplace transformation

of L
{ ∫ t

0 f (τ)dτ
}

is equals to GATE(CE)-2009

(A) sF(s) − f (0) (B) 1
s F(s) (C)

∫ s

0 f (τ)dτ (D) 1
s F(s) − f (0)

Ans. (B)
2. If Laplace transformation of f (t) = 1−et

t is equals to

(A) log
(

s−1
s

)
(B) log

(
s+1

s

)
(C) log

(
s

s−1

)
(D) log

(
s

s+1

)

Ans. (A)

Hint. L
{
1 − et

}
= L

{
1
}
− L

{
et
}

=
1
s
− 1

s − 1
= F(s) (say)

L
{1 − et

t

}
=

∫ s

0
F(s)ds

=

∫ s

0

(1
s
− 1

s − 1

)
ds = log

( s − 1
s

)

3. If Laplace transformation of L
{ ∫ t

0
sin t

t

}
is equals to

(A 1
s

(
π
2 − tan−1 s

)
(B) 1

s

(
π
2 + tan−1 s

)
(C)

(
π
2 − tan−1 s

)
(D) 1

s

(
π
2 − cot−1 s

)

Ans. (A)
Hint. Since

L
{

sin t
}

=
1

s2 + 1

L
{sin t

t

}
=

∫ ∞

s

1
s2 + 1

ds =
π
2

+ tan−1 s = F(s) (say)

L
{∫ t

0

sin t
t

}
=

F(s)
s

=
1
s

(
π
2
− tan−1 s

)

4. If L
{

J0(t)
}

= 1√
s2+1

, then L
{

J0(5t)
}

is equals to

(A 1√
s2+25

(B) 5√
s2+25

(C) 1√
s2−25

(D) s√
s2+25

Ans. (A)

Hint. If L
{

f (t)
}

= F(s), then

L
{

f (at)
}

=
1
s

F
{ s

a

}

L
{

J0(5t)
}

=
1
5

F
{ s

5

}
=

1√
s2 + 25

5. Laplace transformation of f(t) , where

f (t) =

{
t − 1, 1 < t < 2
3 − t, 2 < t < 3
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is equals to

(A) e−s 1
s2 − 2e−2s 1

s2 + e−3s 1
s2 (B) e−s 1

s2 + 2e−2s 1
s2 + e−3s 1

s2

(C) e−s 1
s2 − 2e−2s 1

s2 − e−3s 1
s2 (D) e−s 1

s2 − 2e2s 1
s2 + e3s 1

s2

Ans. (A) Since

L
{

f (t)
}

= (t − 1)
{
H(t − 1) −H(t − 2)

}
+ (3 − t)

{
H(t − 2) + H(t − 3)

}

= (t − 1)
{
H(t − 1)

}
− 2(t − 2)

{
H(t − 2)

}
+ (t − 3)

{
H(t − 3)

}

= e−s 1
s2 − 2e−2s 1

s2 + e−3s 1
s2

6. The Laplace transformation of (t2 − 2t)H(t − 1) is GATE(EE)-98
(A) 2e−s

s3 − 2e−s

s2 (B) 2e−2s

s3 − 2e−s

s2

(C) 2e−s

s3 + 2e−s

s2 (D) 2e−2s

s3 − e−s

s
Ans. (D)

Hint. Since L
{

f (t − a)H(t − a)
}

= e−asF(s). Therefore

L
{
(t2 − 2t)H(t − 1)

}
= L

{(
(t − 1)2 − 1

)
H(t − 1)

}

= L
{(

(t − 1)2
)
H(t − 1)

}
− L

{
H(t − 1)

}
= e−s 2

s3 −
e−s

s

7. Consider the function 5
s(s2+3s+2) , where F(s) is the Laplace transformation of the function f

the initial value of f (t) is equals to GATE(EE)-04
(A) 5 (B) 5

2 (C) 5
3 (D) 0

Ans. (D)
Hint. By applying initial value theorem

lim
t→0

f (t) = lim
s→∞

sF(s) = lim
s→∞

s
( 5

s(s2 + 3s + 2)

)
= 0

8. Consider the function s
s2+6s+2 , where F(s) is the Laplace transformation of the function f

the initial value of f (t) is equals to
(A) 2 (B) 1

2 (C) 1 (D) 0
Ans. (C)
Hint. By applying initial value theorem

lim
t→0

f (t) = lim
s→∞

sF(s) = lim
s→∞

s2

s2 + 6s + 2
= 1

9. If Laplace transformation of f (t) is 5
s + 2s

s2+9 , Then f (0) is equals to
(A) 5 (B) 7 (C) 0 (D)∞
Ans. (B)
Hint. By applying initial value theorem

lim
t→0

f (t) = lim
s→∞

sF(s) = lim
s→∞

s
(5

s
+

2s
s2 + 9

)
= 5 + 2 = 7
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10. If Laplace transformation of f (t) is F (s) = 2
s(s+1) . Then f (∞) is equals to

A) 0 (B) 2 (C) 1 (D) ∝ GATE(ECE)-03
Ans. (B)
Hint. By applying final value theorem

lim
t→∞

f (t) = lim
s→0

sF(s) = lim
s→0

s
( 2

s(s + 1)

)
= 2

11. If F(s) =
2(s+1)

s2+4s+7 . Then the initial and final values of f (t) are respectively GATE(ECE)-11
(A) 0, 2 (B) 2, 0 (C) 0, 2/7 (D) 2/7, 0
Ans. (B)
Hint. By applying initial value theorem

lim
t→0

f (t) = lim
s→∞

sF(s) = lim
s→∞

s
( 2(s + 1)

s2 + 4s + 7

)
= 2

By applying final value theorem

lim
t→∞

f (t) = lim
s→0

sF(s) = lim
s→0

s
( 2(s + 1)

s2 + 4s + 7

)
= 0

12. If L[ f (t)] = k
s(s2+4) . If lim

t→∞
f (t) = 1, then k is given by

(A) 4 (B) zero (C) 0 < k < 12 (D) 5 < k < 12
Ans. (A)
Hint. By applying final value theorem

lim
t→∞

f (t) = lim
s→0

sF(s) ⇒ lim
s→0

s
( k

s(s2 + 4)

)
= 1 ⇒ k = 4.

13. The Laplace transformation of f (t) is given by F(s) = 2
s(s+1) . As t −→ ∞ , the value of f (t)

tends to ECE-2003
(A) 0 (B) 1 (C) 2 (D)∞
Ans. (C)
Hint. By applying final value theorem

lim
t→∞

f (t) = lim
s→0

sF(s) = lim
s→0

s
( 2

s(s + 1)

)
= 2

14. Use Laplace transformation the value of
∫ ∞

0 te−2t sin tdt is
A) 1

25 B) 2
25 C) 3

25 D) 4
25

Ans. (D)

Hint. Since L{sin t} = 1
s2+1 and L{t sin t} = − d

ds

(
1

s2+1

)
= 2s

(s2+1)2 = f (s). Now from the

definition of Laplace transformation
∫ ∞

0
e−st f (t)dt = f (s) ⇒

∫ ∞

0
t sin te−2tdt = f (2) =

2 × 2
(22 + 1)2 =

4
25
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15. Let y be the solution of the initial value problem

d2y
dx2 + y = 6 cos 2x, y(0) = 3, y

′
= 1

Let the Laplace transformation of y be F(s). Then the value of F(1) is GATE(MA)-11
A) 17

5 B) 13
5 C) 11

5 D) 9
5

Ans. B)
Hint. Applying Laplace transform in both sides with respect to t in the equation (??),
we obtain {s2F(s) − sy(0) − y′(0)} + F(s) = 6s

s2+4 . Using the initial conditions, we get,
s2F(s) − 3s − 1 + F(s) = 6s

s2+4 , (s2 + 1)F(s) = 3s + 1 + 6s
s2+4 . Therefore, F(1) = 13

5 .

16. If Y(s) is the Laplace transform of y(t) which is the solution of the initial value problem

d2y
dx2 + y(t) =


0, 0 < t < 2π
sin t, t > 2π

, with y(0) = 1 and y′(0) = 0, then Y(s) equals GATE(MA)-04
A) s

1+s2 + e−2πs

(1+s2)
3
2

B) s+1
1+s2 C) s

1+s2 + e−2πs

(1+s2) D) s(1+s2)+1
(1+s2)2

Ans. A)
Hint.

d2y
dx2 + y(t) =


0, 0 < t < 2π
sin t, t > 2π

Taking Laplace in both sides

p2y(s) − sy(0) − y
′
(0) + y(s) =

∫ ∞

2π
e−pt sin tdt

⇒ (s2 + 1)y(s) − s = 0 − e−2πs

√
1 + s2

(0 − 1) ⇒ y(s) =
s

1 + s2 +
e−2πs

(1 + s2)
3
2

17. Given that the Laplace transform, L
{
eat f (t)

}
= F(s − a), s > a, then L

{
3e5t sin 5t

}
=

A) 3s
s2−10 A) 15

s2−10s C) 3s
s2+10s D) 15

(s−5)2+25 GATE(AE)-2013
Ans. (D)

Hint. L
{

sin 5t
}

=
5

s2 + 25
so L

{
3e5t sin 5t

}
= 3 × 5

(s − 5)2 + 25
=

15
(s − 5)2 + 25

18. Given that the Laplace transform, L
{
eat f (t)

}
= F(s − a), s > a, then L

{
e3t cos 3t

}
=

A) s−3
(s−3)2+9 A) s

(s−3)2+9 C) 3
(s−3)2+9 D) s−9

(s−3)2+16
Ans. (A)

Hint. L
{

cos 3t
}

=
s

s2 + 9
so L

{
e3t cos 3t

}
=

s − 3
(s − 3)2 + 9
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1.10 Review Exercise

1. Prove that L
{
et cos t sin t

}
= 1

s2−2s+5

2. If L
{

f (t)
}

= s2−s+1
(s−1)(2s+1)2 , then prove that by change of scale property

L
{

f (2t)
}

=
s2 − 2s + 4

4(s + 1)2(s − 1)

3. Use the formula for the Laplace transform of a periodic function with period c: L( f ) =
1

1−e−cs

∫ c

0 f (t)e−stdt. Prove that − 1
s

[
− 1

s (e−πs + 1) + 1
s I
]

is the Laplace transform of a half-

rectified wave f (t) =

{
sin t sin t > 0
0 sin t ≤ 0

4. Prove that

L(cosh at cosh bt) =
s[(s2 − a2 − b2]

(s2 − (a − b)2)(s2 − (a + b)2)

5. Find the Laplace transform of both sides of the differential equation 2 d f
dt = 1 with initial

conditions f (0) = 4.
Ans. F(s) = 4

s + 1
2s2 ]

6. Find the Laplace transform of both sides of the differential equation y′′ − 4y′ + 3y = 6t− 8
with initial conditions y(0) = y′(0) = 0.
Ans. Y = 6

s2(s2−4s+3) − 8
s(s2−4s+3)

7. Find the Laplace transform t y′′ + y′ + ty = 0 with y = 1 and y′ = 0 when t = 0.
Ans. (s2 + 1) dY(s)

ds + sY(s) = 0].
8. Find the Laplace transform of J0(t) by using IVP.

Ans. L{J0(t)} = 1√
s2+1

.

Hint. Jn(t) is the solution of Bessel function of order n i.e. t2 d2 Jn(t)
dt2 + t dJn(t)

dt + (t2−n2)Jn(t) = 0.

9. Find the Laplace transform of tJ1(t) by using IVP. Ans. L{tJ1(t)} = 1

(s2+1)
3
2

.

10. Using Laplace transform, show that
∞∫
0

te−3t sin tdt = 3
50 .

11. Show that L{e−2t(3 cos 6t − 5 sin 6t)} = 3s−24
s2+4s+40 .

12. Given that L{ sin t
t } = tan−1( 1

s ), find L{ sin at
t }.

Ans. L{ sin at
t } = tan−1( a

s ).

13. If f (t) =
t∫

0

g(u)
u du, show that L{ f (t)} = 1

s

∞∫
s

G(u)du where G(u) =
∞∫
0

g(u)e−utdt.

14. If f (t) =
∞∫
t

g(u)
u du, show that L{ f (t)} = 1

s

s∫
0

G(u)du where G(u) =
∞∫
0

g(u)e−utdt.

15. Evaluate L{
t∫

0

sin u
u du} by the help of Initial Value Theorem.

Ans. L{
t∫

0

sin u
u du} = 1

s tan−1( 1
s ).



Chapter 2

Inverse Laplace Transformation
2.1 Introduction
In this chapter, we have presented the formal definition of inverse Laplace transform. The
basic operational properties of the inverse Laplace transforms including convolution theorem
are discussed in detail. Also, the solution of the differential equation can be obtained by
determining the inverse Laplace transform. The chapter is systematically developed with
proper examples.

Definition 2.1 Inverse Laplace Transformation: If Laplace transform F(s) of the function f

in t, i.e F(s) = L
{

f (t)
}
, the inverse Laplace transform is f (t) = L−1

{
F(s)

}
where L−1

{
F(s)

}
is the

inverse operator of the Laplace transform i.e. it restores the Laplace transform to the original
function. Examples are,

L−1
{ 1

s − a

}
= eat, L−1

{1
s

}
= 1

L−1
{ a

s2 + a2

}
= sin at, L−1

{ s
s2 + a2

}
= cos at

L−1
{ a

s2 − a2

}
= sinh at, L−1

{ s
s2 − a2

}
= cosh at

L−1
{ 1

sn+1

}
=

tn

Γ(n + 1)
, L−1

{ s
s2 − a2

}
= cosh at

Definition 2.2 Null Functions and Uniqueness We define a null function N in t as one for
which

∫ T

0 N(t)dt = 0 for all positive T. A null function cannot be a continuous function unless
it vanishes for all t ≥ 0. A theorem due to Lerch states that if L{ f (t)} = F(s) = L{g(t)} then
f (t) − g(t) = N(t).
Consequently, given F(s) for which we find a continuous inverse f (t) over a given closed
interval, this function is the unique continuous solution for the inverse over that interval.

2.2 Properties of Inverse Laplace transformation

Property 2.1 Linear property of Inverse Laplace Transformation:

If L−1
{
F1(s)

}
= f1(t), and L−1

{
F2(s)

}
= f2(t), then L−1

{
c1F1(s) + c2F2(s)

}
= c1 f1(t) + c2 f2(t).
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Proof: Since L−1
{
F1(s)

}
= f1(t), and L−1

{
F2(s)

}
= f2(t), then L

{
f1(t)

}
= F1(s) and L

{
f2(t)

}
=

F2(s).

So, L
{
c1 f1(t) + c2 f2(t)

)}
= c1L

{
f1(t)

)}
+ c2L

{
f2(t)

)}
= c1F1(s) + c2F2(s)

⇒ L−1
{
c1F1(s) + c2F2(s)

}
= c1 f1(t) + c2 f2(t) ( Hence proved)

Property 2.2 Shifting property of Inverse Laplace Transformation:

If L−1
{
F(s)

}
= f (t), then L−1

{
F(s − a)

}
= eat f

(
t
)

Proof: Since L−1
{
F(s)

}
= f (t), then L

{
f (t)

}
= F(s). By first shifting property, we know that

L
{
eat f

(
t
)}

= F(s − a) ⇒ L−1
{
F(s − a)

}
= eat f

(
t
)

( Hence proved)

Property 2.3 Change of scale of Inverse Laplace Transformation:

If L−1
{
F(s)

}
= f (t), then L−1

{
F(as)

}
= 1

a f
(

t
a

)

Proof: Since L−1
{
F(s)

}
= f (t), then L

{
f (t)

}
= F(s)

L
{1

a
f
( t

a

)}
=

1
a

L
{

f
( t

a

)}
=

1
a

1
1
a

F
( s

1
a

)
= F(as)

Hence, L−1
{
F(as)

}
=

1
a

f
( t

a

)
( Hence proved)

2.3 Operational Rules of Inverse Laplace Transforms

Theorem 2.1 Multiplication by sn:

If L−1
{
F(s)

}
= f (t), and f (0) = 0, then L−1

{
sF(s)

}
= f ′(t)

Proof: Since L−1
{
F(s)

}
= f (t), then L

{
f (t)

}
= F(s). Therefore

L
{

f ′(t)
}

= sF(s) − f (0) = sF(s), Since f (0) = 0

⇒ L−1
{
sF(s)

}
= f ′(t) ( Hence proved)

Example 2.1 Find

L−1
{ s

(s + 1)5

}
.
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Solution:

Since L−1
{
F(s)

}
= f (t)

So, L−1
{ 1

s5

}
=

t4

4!

⇒ L−1
{ 1

(s + 1)5

}
= e−t t4

4!

∴ f (t) = e−t t4

4!

Also we have L
{

f ′(t)
}

= sF(s) − f (0)

So, L−1
{ s

(s + 1)5

}
=

d
dt

{
e−t t4

4!

}
, ∵ f (0) = 0

=
1
4!

(e−t4t3 − e−tt4) =
e−tt3

24
(4 − t)

Theorem 2.2 Division by s:

If L−1
{
F(s)

}
= f (t), then L−1

{
F(s)

s

}
=

∫ t

0 f (u)du

Proof: Let φ(t) =
∫ t

0 f (u)du. Therefore φ′(t) = f (t) and φ(0) = 0. If L−1
{
F(s)

}
= f (t), then

L
{

f (t)
}

= F(s). Therefore

L
{
φ′(t)

}
= sΦ(s) − φ(0) = sΦ(s)

⇒ L
{

f (t)
}

= sΦ(s) ⇒ F(s)
s

= L
{
φ(t)

}

⇒ L−1
{F(s)

s

}
= φ(t) =

∫ t

0
f (u)du ( Hence proved)

Theorem 2.3 Inverse Laplace Transformation of Integral:

If L−1
{
F(s)

}
= f (t), then L−1

{ ∫ ∞
s F(u)du

}
=

f (t)
t

Proof: Since L−1
{
F(s)

}
= f (t), then L

{
f (t)

}
= F(s). Therefore

L
{ f (t)

t

}
=

∫ ∞

s
F(u)du

⇒ L−1
{∫ ∞

s
F(u)du

}
=

f (t)
t

( Hence proved)

Theorem 2.4 Convolution Theorem:
If L−1

{
F(s)

}
= f (t), and L−1

{
G(s)

}
= g(t) then L−1

{
F(s) · G(s)

}
= f (t) ? g(t) =

∫ u

0 f (u − t)g(t)dt
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Proof. From the definition of the Laplace transform, we know that

F(s) G(s) = [
∫ ∞

0
f (t)e−stdt] [

∫ ∞

0
g(v)e−svdv]

=

∫ ∞

0

∫ ∞

0
e−s(t+v) f (t)g(v)dt dv

=

∫ ∞

0
g(t){

∫ ∞

0
e−(t+v) f (v) dv} dt

Let t + v = u in the inner integral. Then

F(s) G(s) =

∫ ∞

0
g(t){

∫ ∞

t
e−su f (u − t) du} dt

Then we have F(s) G(s) =

∫ ∞

0
{
∫ u

0
e−su f (u − t)g(t) dt} du

=

∫ ∞

0
e−su{

∫ u

0
f (u − t)g(t) dt} du = L[

∫ u

0
f (u − t)g(t) dt; u]

Using inverse Laplace transform, we get L−1
{
F(s) · G(s)

}
= f (t) ? g(t) =

∫ u

0
f (u − t)g(t)dt

2.4 Worked Out Examples

Example 2.2 Applying Convolution theorem, verify that

sin t ? cos t =

∫ t

0
sin u cos(t − u)du =

1
2

t sin t

Solution: Let f (t) = sin t, g(t) = cos t. Then L[sin t] = 1
s2+1 = F(s), L[g(t)] = s

s2+1 = G(s).

By convolution theorem, L−1
[
F(s) · G(s)

]
= f ? g =

∫ t

0 f (u)g(t − u)du.

∫ t

0
sin u cos(t − u)du = L−1

[ s
(s2 + 1)2

]

= tL−1
[ ∫ ∞

s

u du
(u2 + 1)2

]
(2.1)

Now
∫ ∞

s

u
(u2 + 1)2 du =

1
2

∫ ∞

s

2u du
(u2 + 1)2

=
1
2

lim
B→∞

∫ B

s

2u du
(u2 + 1)2

=
1
2

lim
B→∞

[
− 1

u2 + 1

]B

s
=

1
2

1
s2 + 1

∴ L−1
[ ∫ ∞

s

u du
(u2 + 1)2

]
=

t
2

L−1
[ 1
(s2 + 1)2

]
=

1
2

t sin t (2.2)

From (2.1)-(2.2), we get,
∫ t

0
sin u cos(t − u)du =

1
2

t sin t. Hence verified. (2.3)
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Example 2.3 Evaluate by Convolution theorem, L−1
[

1
(s−2)(s2+1)

]

Solution: Let L−1
[

1
(s−2)

]
= e2t = f (t), L−1

[
1

(s2+1)

]
= sin t = g(t).

L−1
[ 1
(s − 2)(s2 + 1)

]
= L−1

[ 1
(s − 2)

· 1
s2 + 1

]

= f (t) ? g(t)

=

∫ t

0
f (u)g(t − u)du =

∫ t

0
e2u sin(t − u)du

=

∫ t

0
e2u

{
sin t cos u − cos t sin u

}
du

= sin t
∫ t

0
e2u cos udu − cos t

∫ t

0
e2u sin udu

=
1
5

[
e2t − 2 sin t − cos t

]

[
Note

∫
eax sin bxdx = eax

a2+b2

(
a sin bx− b cos bx

)
+ c &

∫
eax cos bxdx = eax

a2+b2

(
a cos bx + b sin bx

)
+ c

]

Example 2.4 Apply Convolution theorem to evaluate L−1
{

1
(s2+2s+5)2

}
.

Solution: L−1
{ 1

(s2 + 2s + 5)2

}
= L−1

{ 1
(s2 + 2s + 5)

· 1
(s2 + 2s + 5)

}
= L−1

{
F(s) · F(s)

}

where F(s) =
1

(s2 + 2s + 5)

so f (t) = L−1
{ 1

(s2 + 2s + 5)

}
, [By applying the inverse of Laplace Transform]

= L−1
{ 1

(s + 1)2 + 22

}
= e−tL−1

{ 1
s2 + 22

}
, [ by First shifting property]

= e−t sin 2t
2
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By convolution theorem,

L−1
{
F(s) · F(s)

}
=

∫ t

0
f (u) · f (t − u) du

⇒ L−1
{ 1

(s2 + s + 5)2

}
=

∫ t

0

(
e−u sin 2u

2

)
·
(
e−(t−u) sin 2(t − u)

2

)
du

=
e−t

4

∫ t

0
sin 2u · sin 2(t − u) du

=
e−t

4
· 1

2

∫ t

0

[
cos(4u − 2t) − cos 2t

]
du

=
e−t

8

[sin(4u − 2t)
4

− u cos 2t
]t

0

=
e−t

8

[sin(2t)
4
− t cos 2t − sin(−2t)

4

]

=
e−t

8

[sin(2t)
2
− t cos 2t

]

Example 2.5 Prove that the n-fold repeated integral

∫ t

0

∫ t

0
· · ·

∫ t

0
f (ξ)(dξ)n =

∫ t

0

f (x)(t − x)n−1

(n − 1)!
dx.

Solution: ∵ L
{ ∫ t

0
f (ξ)dξ

}
=

F(s)
s

∴ L
{ ∫ t

0

{ ∫ t

0
f (ξ)dξ

}
dξ

}
=

L
{ ∫ t

0 f (ξ)dξ
}

s
=

F(s)
s2

· · · · · · · · ·
and L

{ ∫ t

0

∫ t

0
· · ·

∫ t

0
f (ξ)(dξ)n

}
=

F(s)
sn (2.4)

Now, L−1
{
F(s)

}
= f (t) and L−1

{
s−n

}
= tn−1

(n−1)! = g(t) (say). Hence by convolution theorem,

L−1
{
F(s) · G(s)

}
= f (t) ? g(t) =

∫ t

0
f (x)g(t − x)dx

∴ L−1
{F(s)

sn

}
=

∫ t

0

f (x)(t − x)n−1

(n − 1)!
dx (2.5)

From the equations (2.4) and (2.5), we have
∫ t

0

∫ t

0 · · ·
∫ t

0 f (ξ)(dξ)n =
∫ t

0
f (x)(t−x)n−1

(n−1)! dx.

Example 2.6 For the Beta function B defined by

B(m,n) =

∫ 1

0
xm−1(1 − x)n−1dx,m > 0,n > 0

prove that B(m,n) =
Γ(m)Γ(n)
Γ(m+n) .
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Proof: Let M(t) =
∫ t

0 xm−1(t − x)n−1dx and using the convolution rule we have

L
{
M(t)

}
= L

{∫ t

0
xm−1(t − x)n−1dx

}

= L
{
tm−1

}
· L

{
tn−1

}
=

Γ(m)
sm · Γ(n)

sn ,m > 0,n > 0

=
Γ(m) · Γ(n)

sm+n

Taking the inverse transform, we get M(t) =
Γ(m)·Γ(n)
Γ(m+n) tm+n−1 =

∫ t

0 xm−1(t − x)n−1dx. Hence putting

t = 1, we get M(1) = B(m,n) =
Γ(m)·Γ(n)
Γ(m+n) .

Solution of differential equations by Laplace Transform:

Example 2.7 Solve the equation using the Laplace transform method

y′′ + 4y′ + 8y = cos 2t (2.6)

Given that y = 2 and y′ = 1 when t = 0.

Solution: Applying Laplace transform in both sides with respect to t in the equation (2.6), we
obtain {s2Y(s)− sy(0)− y′(0)}+ 4{sY(s)− y(0)}+ 8Y(s) = s

s2+4 . Using the initial conditions, we get,
s2Y(s) − 2s − 1 + 4sY(s) − 8 + 8Y(s) = s

s2+4 or (s2 + 4s + 8)Y(s) = s
s2+4 + 2s + 9.

Therefore Y(s) =
1
20
× s

s2 + 4
+

1
5
× 1

s2 + 4
− 1

20
× (s + 2) − 2

(s + 2)2 + 22

− 2
5
× 1

(s + 2)2 + 22 +
2(s + 2) − 4
(s + 2)2 + 22 +

9
(s + 2)2 + 22

Taking the inverse Laplace transform, we obtain

Therefore y(t) =
1

20
cos 2t +

1
10

sin 2t − 1
20

e−2t cos 2t +
1
20

e−2t sin 2t

− 2
10

e−2t sin 2t + 2e−2t cos 2t − 2e−2t sin 2t +
9
2

e−2t sin 2t

On simplification, we get y(t) = e−2t

20 (39 cos 2t + 47 sin 2t)) + 1
20 (cos 2t + 2 sin 2t).

Example 2.8 Solve the equation using the Laplace transform method

t y′′ + y′ + ty = 0 (2.7)

Given that y = 1 and y′ = 0 when t = 0.

Solution: Applying Laplace transform in both sides with respect to t in the equation (2.7), we
obtain − d

ds {s2Y(s) − sy(0) − y′(0)} + {sY(s) − y(0)} − d
ds {Y(s)} = 0. Using the initial conditions,

we get, − d
ds {s2Y(s) − s} + {sY(s) − 1} − dY(s)

ds = 0 or (s2 + 1) dY(s)
ds + sY(s) = 0 which is a first

order ODE. Integrating, we get ln Y(s) + 1
2 ln(s2 + 1) = ln c or Y(s) = c√

s2+1
. Taking the inverse
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Laplace transform, we obtain y(t) = c J0(t), where J0(t) is a Bessel function of order zero. Since
y(0) = 1 = c J0(0) = c, the required solution is y(t) = J0(t).

Example 2.9 Solve the simultaneous equations using the Laplace transform method

dx
dt
− y = et,

dy
dt

+ x = sin t (2.8)

Given that x(0) = 1 and y(0) = 0.

Solution: Applying Laplace transform in both equations and using the notation Y = L[y; s],,
we get, sX− x(0)−Y = 1

s−1 , sY− y(0) + X = 1
s2+1 . Using the given initial conditions, the

above equations reduce to

sX − Y =
s

s − 1
(2.9)

X + sY =
1

s2 + 1
(2.10)

Solving equations (2.9) and (2.10), we get

X =
s2

(s − 1)(s2 + 1)
+

1
(s2 + 1)2

=
1
2

(
1

s − 1
+

s
s2 + 1

+
1

s2 + 1
) +

1
(s2 + 1)2 (2.11)

Y =
s3

(s − 1)(s2 + 1)
+

s
(s2 + 1)2 −

s
s − 1

=
s

(s2 + 1)2 −
1
2

(
1

s − 1
− s

s2 + 1
+

1
s2 + 1

) (2.12)

Again, taking the inverse Laplace transform of (2.11), we obtain

x(t) =
1
2

[et + cos t + sin t + (sin t − t cos t)] (2.13)

Again, taking the inverse Laplace transform of (2.12), we obtain

y(t) =
1
2

[t sin t − et + cos t − sin t] (2.14)

Equations (2.13) and (2.14) constitute the solution of the given system.

Example 2.10 Solve one dimensional wave equation

∂2u
∂t2 = c2 ∂

2u
∂x2 (2.15)

Subject to the

ICS: u(x, 0) = 0,
∂u
∂t

(x, 0) = 0, x > 0 (2.16)

BCS: u(0, t) = F(t), u(x, t)→ 0, as x→∞, t ≥ 0 (2.17)
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Solution: Applying Laplace transform in both sides with respect to t in the equation (2.15), we
get

L
{
∂2u
∂t2

}
= c2L

{
∂2u
∂x2

}

⇒ c2 d2U(x, s)
dx2 = s2U(x, s) − su(x, 0) − ut(x, 0)[Where L{u(x, t)} = U(x, s)]

⇒ d2U(x, s)
dx2 =

s2

c2 U(x, s) [From the given conditions] (2.18)

Solving the equation (2.18),we get U(x, s) = Ae
s
c x + Be−

s
c x (2.19)

Since u(0, t) = F(t),u(x, t)→ 0 as x→∞, t ≥ 0. Their Laplace Transformations are

U(0, s) = f (s) [where L{F(t)} = f (s)] (2.20)

U(x, s)→ 0 as x→∞ (2.21)

From the equations (2.19) and (2.20), we get A + B = f (s) (2.22)

From the equations (2.19) and (2.21), we get A = 0 (2.23)

Solving (2.22) and (2.23), we get B = f (s) (2.24)

Now from (2.19), we get U(x, s) = f (s)e−
s
c x (2.25)

Taking inverse Laplace Transformation, we get the general solution as

u(x, t) = L−1
{
U(x, s)

}
= L−1

{
f (s)e−

s
c x
}

=

{
F(t − x

c ), t ≥ x
c ≥ 0

0, t < x
c

= F(t − x
c

)H(t − x
c

), where H(t − x
c

) =

{
1, t ≥ x

c ≥ 0
0, t < x

c

Example 2.11 Solve one dimensional wave equation

∂2u
∂t2 = c2 ∂

2u
∂x2 (2.26)

Subject to the

BCS: u(0, t) = 0, u(1, t) = 0, t > 0 (2.27)

ICS: u(x, 0) = sinπx, ut(x, 0) = − sinπx, 0 < x < 1 (2.28)

Solution: Applying Laplace transform in both sides in the equation (2.26), we get

L
{
∂2u
∂t2

}
= L

{
∂2u
∂x2

}
⇒ d2U(x, s)

dx2 = s2U(x, s) − su(x, 0) − ut(x, 0)

⇒ d2U(x, s)
dx2 = s2U(x, s) − s sinπx + sinπx = s2U(x, s) + (1 − s) sinπx (2.29)

Solving the equation (2.29), we get U(x, s) = Aesx + Be−sx − (1 − s) sinπx
π2 + s2 (2.30)

Since u(0, t) = 0,u(1, t) = 0, t > 0. Their LT are U(0, s) = 0 (2.31)

and U(1, s) = 0 (2.32)

From the equations (2.30) and (2.31), we get A + B = 0 (2.33)

From the equations (2.30) and (2.32), we get Aes + Be−s = 0 (2.34)
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Solving (2.33) and (2.34), we get, A = B = 0 and so, U(x, s) = − (1−s) sinπx
π2+s2 .

Taking inverse Laplace Transformation, we get the general solution as

u(x, t) = L−1
{
U(x, s)

}
= sinπx

[
L−1

{ s
π2 + s2

}
− L−1

{ 1
π2 + s2

}]

⇒ u(x, t) = sinπx
[

cosπt − sinπt
π

]

Example 2.12 Solve one dimensional Heat equation

∂u
∂t

=
∂2u
∂x2 (2.35)

Subject to the

BCS: u(0, t) = 1,u(1, t) = 1, t > 0 (2.36)

IC: u(x, 0) = 1 + sinπx, 0 < x < 1 (2.37)

Solution: Applying Laplace transform in both sides in the equation (2.35), we get

L
{
∂u
∂t

}
= L

{
∂2u
∂x2

}
⇒ d2U(x, s)

dx2 = sU(x, s) − u(x, 0)

⇒ d2U(x, s)
dx2 = sU(x, s) − 1 − sinπx

⇒ d2U(x, s)
dx2 − sU(x, s) = −(1 + sinπx) (2.38)

Solving the equation (2.38), we get U(x, s) = Ae
√

sx + Be−
√

sx +
1
s

+
sinπx
π2 + s

(2.39)

Since u(0, t) = 1,u(1, t) = 1, t > 0. Their LT are U(0, s) =
1
s

(2.40)

and U(1, s) =
1
s

(2.41)

From the equations (2.39) and (2.40), we get A + B +
1
s

=
1
s

(2.42)

From the equations (2.39) and (2.41), we get Ae
√

s + Be−
√

s +
1
s

=
1
s

(2.43)

Solving (2.42) and (2.43), we get A = B = 0 and so U(x, s) =
1
s

+
sinπx
π2 + s

(2.44)

Taking inverse Laplace Transformation, we get the general solution as

u(x, t) = L−1
{
U(x, s)

}
= L−1

{1
s

}
+ L−1

{sinπx
π2 + s

}

⇒ u(x, t) = 1 + sinπxe−π
2t
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Example 2.13 Solve one dimensional Heat equation

∂u
∂t

= 2
∂2u
∂x2 (2.45)

Subject to the

BCS: u(0, t) = 0, u(5, t) = 0, t > 0 (2.46)

IC: u(x, 0) = 10 sin 4πx, 0 < x < 5 (2.47)

Solution: Applying Laplace transform in both sides in the equation (2.45), we get

L
{
∂u
∂t

}
= 2L

{
∂2u
∂x2

}
⇒ 2

d2U(x, s)
dx2 = sU(x, s) − u(x, 0)

⇒ 2
d2U(x, s)

dx2 = sU(x, s) − 10 sin 4πx

⇒ d2U(x, s)
dx2 − s

2
U(x, s) = −5 sin 4πx (2.48)

Solving the equation (2.48), we get U(x, s) = Ae
√

s
2 x + Be−

√
s
2 x +

(10 sin 4πx)
32π2 + s

(2.49)

Since u(0, t) = 0,u(5, t) = 0, t > 0. Their LT are U(0, s) = 0 (2.50)

and U(5, s) = 0 (2.51)

From the equations (2.49) and (2.50), we get A + B = 0 (2.52)

From the equations (2.49) and (2.51), we get Ae
√

s
2 5 + Be−

√
s
2 5 = 0 (2.53)

Solving (2.52) and (2.53), we get A = B = 0 (2.54)

So from (2.49), we get U(x, s) =
10 sin 4πx
32π2 + s

(2.55)

Taking inverse Laplace Transformation, we get the general solution as

u(x, t) = L−1
{
U(x, s)

}
= (10 sin 4πx)L−1

{ 1
32π2 + s

}

⇒ u(x, t) = 10 sin 4πxe−32π2t.

Example 2.14 Using the Laplace transform solve the differential equation

f ′′ − 4 f ′ + 3 f = 1 (2.56)

with initial conditions f (0) = f ′(0) = 0.

Solution: First, take the Laplace transform of the equation. Since f ′(0) = f (0) = 0, if L( f ) = F(s)
then L( f ′) = sF(s) and L( f ′′) = s2F(s). Thus, the subsidiary equation is

s2F − 4sF + 3F =
1
s

and so (s2 − 4s + 3)F =
1
s

F =
1
s

1
s2 − 4s + 3

and since s2 − 4s + 3 = (s − 3)(s − 1), this gives F =
1

s(s − 3)(s − 1)

Before we can invert this, we need to do a partial fraction expansion.

1
s(s − 3)(s − 1)

=
A
s

+
B

s − 3
+

C
s − 1

⇒ A(s − 3)(s − 1) + Bs(s − 1) + Cs(s − 3) = 1
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So substituting in s = 0 we get A = 1/3, s = 3 gives B = 1/6 and s = 1 gives C = −1/2. Hence

F =
1
3s

+
1

6(s − 3)
− 1

2(s − 1)

and taking inverse LT we get,

f (t) =
1
3

+
1
6

e3t − 1
2

et

Example 2.15 Using the Laplace transform solve the differential equation

f ′′ − 4 f ′ + 3 f = 2et (2.57)

with initial conditions f (0) = f ′(0) = 0.

Solution: This time we have L(2et) = 2/(s − 1) on the right hand side. This means that the
subsidiary equation is

(s2 − 4s + 3)F =
2

s − 1
so F =

2
(s − 1)2(s − 3)

(2.58)

We need to do partial fractions again, but this is one of those cases with a repeated root:

1
(s − 1)2(s − 3)

=
A

s − 1
+

B
(s − 1)2 +

C
s − 3

⇒ A(s − 1)(s − 3) + B(s − 3) + C(s − 1)2 = 1 (2.59)

So s = 1 gives B = −1/2 and s = 3 gives C = 1/4. No value of s gives A on its own, so wee try
s = 2:

1 = −A +
1
2

+
1
4

which means that A = −1/4. Hence

F = − 1
2(s − 1)

− 1
(s − 1)2 +

1
2(s − 3)

and taking inverse LT, we get,

f (t) = −1
2

et − tet +
1
2

e3t

Example 2.16 Using the Laplace transform solve the differential equation

f ′′ − 4 f ′ + 3 f = 0 (2.60)

with initial conditions f (0) = 1 and f ′(0) = 1.

Solution: In this example there are non-zero boundary conditions. Since

L( f ′) = sF − f (0) (2.61)

L( f ′′) = s2F − s f (0) − f ′(0) (2.62)

the subsidiary equation in this case is

s2F − s − 1 − 4sF + 4 + 3F = 0 so (s2 − 4s + 3)F = s − 3.

Hence F =
1

s − 1
and taking LT, we get, f (t) = et
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Example 2.17 Using the Laplace transform solve the differential equation

y′′ − 2ay′ + a2y = 0 (2.63)

with initial conditions y′(0) = 1 and y(0) = 0. a is some real constant.

Solution: Taking the Laplace transform we get

s2Y − 1 − 2aY + a2Y = 0⇒ Y =
1

(s − a)2 (2.64)

Taking Inverse Laplace tranformation, we get, y = teat (2.65)

Example 2.18 Using the Laplace transform solve the differential equation

f ′′ + f ′ − 6 f = e−3t (2.66)

with initial conditions f (0) = f ′(0) = 0.

Solution: So, the subsidiary equation is s2F + sF − 6F = 1
s+3 ⇒ F(s) = 1

(s+3)2(s−2) . We do partial
fractions

1
(s + 3)2(s − 2)

=
A

s + 3
+

B
(s + 3)2 +

C
s − 2

⇒ A(s + 3)(s − 2) + B(s − 2) + C(s + 3)2 = 1 (2.67)

Taking s = −3 gives B = −1/5 and s = 2 gives C = 1/25. Putting in s = 1 we find

4A +
1
5

+
16
25

= 1 and so A = −1/25. (2.68)

Putting the values of A,B,C, we get F(s) = − 1
25(s + 3)

− 1
5(s + 3)2 +

1
25(s − 2)

(2.69)

Taking Inverse Laplace transformation, we get, f (t) = − 1
25

e−3t − t
5

e−3t +
1
25

e2t (2.70)

Example 2.19 Using the Laplace transform solve the differential equation

f ′′ + 6 f ′ + 13 f = 0 (2.71)

with initial conditions f (0) = 0 and f ′(0) = 1.

Solution: Taking the Laplace transform of the equation we get,

s2F − 1 + 6sF + 13F = 0⇒ F =
1

s2 + 6s + 13
. (2.72)

Now, using minus b plus or minus the square root of b squared minus four a c all over two a,
we get

s2 + 6s + 13 = 0⇒ s =
−6 ±

√
36 − 52

2
= −3 ± 2i (2.73)

which means s2 + 6s + 13 = (s + 3 − 2i)(s + 3 + 2i) (2.74)

Next, we do the partial fraction expansion,

1
s2 + 6s + 13

=
A

s + 3 − 2i
+

B
s + 3 + 2i

⇒ A(s + 3 + 2i) + B(s + 3 − 2i) = 1. (2.75)
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Therefore we choose s = −3 + 2i to get A = 1
4i = − i

4 and s = −3 − 2i to get B = − 1
4i = i

4 and so

F = − i
4

1
s + 3 − 2i

+
i
4

1
s + 3 + 2i

. (2.76)

Then by taking inverse Laplace transform, we get

f (t) = − i
4

e−(3−2i)t +
i
4

e−(3+2i)t =
i
4

e−3t(e−2it − e2it) =
1
2

e−3t sin 2t (2.77)

Example 2.20 Using the Laplace transform solve the differential equation

f ′′ + 6 f ′ + 13 f = et (2.78)

with initial conditions f (0) = 0 and f ′(0) = 0.

Solution: Taking the Laplace transform of the equation gives

s2F + 6sF + 13F =
1

s − 1
⇒ F =

1
(s − 1)(s + 3 + 2i)(s + 3 − 2i)

. (2.79)

We write,
1

(s − 1)(s + 3 + 2i)(s + 3 − 2i)
=

A
s + 3 − 2i

+
B

s + 3 + 2i
+

C
s − 1

⇒ A(s − 1)(s + 3 + 2i) + B(s − 1)(s + 3 − 2i) + C(s + 3 − 2i)(s + 3 + 2i) = 1.

Putting s = −3 + 2i we get A(−4 + 2i)(4i) = A(−8 − 16i) = 1 so A = − 1
8+16i = − 1

8+16i
8−16i
8−16i = − 1+2i

40 .
In the same way, s = −3 − 2i leads to B = − 1−2i

40 and finally, s = 1 gives C = 1
20 . Putting all this

together we get

F(s) = −1 + 2i
40

1
s + 3 − 2i

− 1 − 2i
40

1
s + 3 + 2i

+
1

20
1

s − 1
(2.80)

and so f (t) = −1 + 2i
40

e−(3−2i)t − 1 − 2i
40

e−(3+2i)t +
1
20

et

= − 1
40

e−3t
[
(1 + 2i)e2it + (1 − 2i)e−2it

]
+

1
20

et (2.81)

We then substitute in e2it = cos 2t + i sin 2t, e−2it = cos 2t − i sin 2t to end up with f (t) =
1
20 e−3t[2 sin 2t − cos 2t] + 1

20 et.

Example 2.21 Use Laplace transform methods to solve the differential equation

f ′′ + 2 f ′ − 3 f =

{
1, 0 ≤ t < c
0, t ≥ c (2.82)

subject to the initial conditions f (0) = f ′(0) = 0.

Solution: Taking Laplace transforms of both sides and using the tables for the Laplace transform
of the right hand side function, leads to

(s2 + 2s − 3)F =
1 − e−cs

s
⇒ F =

1 − e−cs

s(s2 + 2s − 3)

= (1 − e−cs)
1

s(s − 1)(s + 3)
= (1 − e−cs)

(A
s

+
B

s − 1
+

C
s + 3

)
(2.83)
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Concentrating on the partial fractions part, we have

1
s(s − 1)(s + 3)

=
A
s

+
B

s − 1
+

C
s + 3

⇒ A(s − 1)(s + 3) + Bs(s + 3) + Cs(s − 1) = 1

s = 0 : − 3A = 1 ⇒ A = −1
3

s = 1 : 0 + 4B + 0 = 1 ⇒ B =
1
4

s = −3 : 0 + 012C = 1 ⇒ C =
1

12

Hence we have F = (1 − e−cs)
(
−1

3
1
s

+
1
4

1
s − 1

+
1

12
1

s + 3

)

From the tables, we know that L
(
−1

3
+

1
4

et − 1
12

e−3t
)

= −1
3

1
s

+
1
4

1
s − 1

+
1

12
1

s + 3
and then using the second shift theorem

f (t) = −1
3

+
1
4

et +
1
12

e−3t −Hc(t)
(
−1

3
+

1
4

e(t−c) +
1

12
e−3(t−c)

)
(2.84)

Example 2.22 Use Laplace transform methods to solve the differential equation

f ′′ + 2 f ′ − 3 f =



0, 0 ≤ t < 1
1, 1 ≤ t < 2
0, t ≥ 2

(2.85)

subject to the initial conditions f (0) = 0 and f ′(0) = 0.

Solution: Remember the definition of the Heaviside function:

Ha(t) =

{
0 t < a
1 t ≥ a (2.86)

so the Heaviside function is zero until a and then it is one. The right hand side is zero until
t = 1 and then it is one until t = 2 and then it is zero again. Consider H1(t) − H2(t), this is zero
until you reach t = 1, then the first Heaviside function switches on, the other one remains zero.
Things stay like this until you reach t = 2, then the second Heaviside function switches on as
well and you get 1 − 1 = 0. Thus

H1(t) −H2(t) =



0, 0 ≤ t < 1
1, 1 ≤ t < 2
0, t ≥ 2

(2.87)

Now, using

L(Ha(t)) =
e−as

s
(2.88)

we take the Laplace transform of the differential equation:

s2F + 2sF − 3F =
e−s

s
− e−2s

s
⇒ F(s) =

1
s(s − 1)(s + 3)

(
e−s − e−2s

)

Now, we have that
1

s(s − 1)(s + 3)
= − 1

3s
+

1
4(s − 1)

+
1

12(s + 3)

and we know that L
(
−1

3
+

1
4

et +
1
12

e−3t
)

= −1
3

+
1

4(s − 1)
+

1
12(s + 3)



42 CONTENTS

In other word, if it wasn’t for the exponentials we’d know the little f. However, we know from
the second shift theorem that the affect of the exponential e−as is to change t to t − a and to
introduce an overall factor of Ha(t). Thus

f (t) = H1(t)
(
−1

3
+

1
4

et−1 +
1
12

e−3t+3
)
−H2(t)

(
−1

3
+

1
4

et−2 +
1

12
e−3t+6

)
.

Example 2.23 Use Laplace transform methods to solve the differential equation

f ′′ + 2 f ′ − 3 f = δ(t − 1) (2.89)

subject to the initial conditions f (0) = 0 and f ′(0) = 1.

Solution: We take the Laplace transform using

L(δ(t − a)) = e−as ⇒ (s2 + 2s − 3)F − 1 = e−s (2.90)

Now, if we do partial fractions on 1/(s2 + 2s − 3) we get

1
s2 + 2s − 3

= − 1
4(s + 3)

+
1

4(s − 1)
(2.91)

Hence F =

(
− 1

4(s + 3)
+

1
4(s − 1)

) (
1 + e−s) (2.92)

Since L
(
−1

4
e−3t +

1
4

et
)

= − 1
4(s + 3)

+
1

4(s − 1)
(2.93)

then, by the second shift theorem we have

f =
(
−1

4
e−3t +

1
4

et
)

+ H1(t)
(
−1

4
e−3t+3 +

1
4

et−1
)

(2.94)

Example 2.24 Consider the Laplace transform to solve

f ′′ + 2 f ′ + 5 f = 1 (2.95)

with initial conditions f (0) = f ′(0) = 0.

Solution: Taking the Laplace transform of each side we get

(s2 + 2s + 5)F =
1
s
⇒ F =

1
s(s2 + 2s + 5)

(2.96)

We now need to factorize s2 + 2s + 5. Solving using the formula gives

s =
−2 ±

√
4 − 20

2
= −1 ± 2i (2.97)

so s2 + 2s + 5 = (s + 1 + 2i)(s + 1 − 2i) (2.98)

Next, partial fractions. This part is no different from the examples without complex numbers,
but it is trickier.

1
s(s + 1 − 2i)(s + 1 + 2i)

=
A
s

+
B

s + 1 − 2i
+

C
s + 1 + 2i

(2.99)
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Multiplying across by the denominator gives

A(s + 1 − 2i)(s + 1 + 2i) + Bs(s + 1 + 2i) + Cs(s + 1 − 2i) = 1 (2.100)

Choosing s = 0 gives 1 = 5A and hence A = 1/5. Next, s = −1 + 2i gives 1 = B(−1 + 2i)(4i) =

−8 − 4i so B = − 1
8+4i . Finally, s = −1 − 2i gives C(−1 − 2i)(−4i) = −8 + 4i = 1 giving C = − 1

8−4i .
Putting all this together we get

F =
1
5s
− 1

8 + 4i
1

s + 1 − 2i
− 1

8 − 4i
1

s + 1 + 2i
(2.101)

and, using the tables, this gives

f =
1
5
− 1

8 + 4i
e−(1−2i)t − 1

8 − 4i
e−(1+2i)t (2.102)

Although this does tell us what f is, it does it in a complicated way. For a start, this makes it
look like f is complex, when we know that f satisfies a real differential equation and should
be real. To rewrite this in a real form we need to do two things, we change the fractions with
complex numbers on the bottom to fractions with complex numbers on the top and we expand
the exponentials using the formula

eiθ = cosθ + i sinθ
e−iθ = cosθ − i sinθ (2.103)

Note that the second of these formulas follows from the first using

cos (−θ) = cosθ
sin(−θ) = − sinθ (2.104)

First the fractions, remember there is a standard method for dividing by a complex number:
you multiply above and below by the conjugate. Hence

1
8 + 4i

=
1

8 + 4i
8 − 4i
8 − 4i

(2.105)

which makes sense because the second fraction is equal to one. Now

(8 + 4i)(8 − 4i) = 82 − (4i)2 = 64 + 16 = 80 (2.106)

and so
1

8 + 4i
=

8 − 4i
80

=
2 − i
20

(2.107)

You can do the same with the other complex fraction, it is quicker just to note it is the same as
the one we just did except the sign of i is different, so,

1
8 + 4i

=
8 + 4i

80
=

2 + i
20

Now we have f (t) =
1
5
− 2 − i

20
e−(1−2i)t − 2 + i

20
e−(1+2i)t

and so f (t) =
1
5
− 1

20

[
(2 − i)e2it − (2 + i)e−2it

]
e−t

i.e. f (t) =
1
5
− 1

20
[(2 − i)(cos 2t + i sin 2t) − (2 + i)(cos 2t + i sin 2t)] e−t

or f (t) =
1
5
− 1

10
(2 cos 2t + sin 2t)e−t
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Example 2.25 Use the Laplace transform to solve the differential equation:

d2 f
dt2 + 2

d f
dt

+ 2 f = 1 (2.108)

with initial conditions f (0) =
d f
dt

(0) = 0.

Solution: Taking the Laplace transform of both sides we get.

(s2 + 2s + 2)F =
1
s
⇒ F(s) =

1
s(s2 + 2s + 2)

(2.109)

and we can factor the denominator using the roots

s =
−2 ±

√
4 − 8

2
=
−2 ±

√
−4

2
= −1 ±

√
−1 = −1 ± i

of the quadratic. So complex partial fractions take the form

F =
1

s(s − (−1 + i))(s − (−1 − i))
=

A
s

+
B

s + 1 − i
+

C
s + 1 + i

= A(s + 1 − i)(s + 1 + i) + Bs(s + 1 + i) + Cs(s + 1 − i) = 1

= A(s2 + 2s + 2) + Bs(s + 1 + i) + Cs(s + 1 − i)

Putting s = 0 : 2A = 1 ⇒ A =
1
2

Putting s = −1 + i : 0 + B(−1 + i)(2i) + 0 = 2B(−i − 1) = −2(1 + i)B = 1 (2.110)

⇒ B =
1

−2(1 + i)
= − 1 − i

2(1 + i)(1 − i)

= −1 − i
4

= −1
4

+
i
4

Putting s = −1 − i : 0 + 0 + C(−1 − i)(−2i) + 0 = 2C(i − 1) = 2(−1 + i)C = 1

C =
1

2(−1 + i)
=

−1 − i
2(−1 + i)(−1 − i)

= −1 + i
4

= −1
4
− i

4
= B

∴ F(s) =
1
2

1
s

+
(
−1

4
+

i
4

) 1
s + 1 − i

+
(
−1

4
− i

4

) 1
s + 1 + i

(2.111)

Using inverse Laplace transform, we have

f (t) =
1
2

+
(
−1

4
+

i
4

)
e(−1+i)t +

(
−1

4
− i

4

)
e(−1−i)t

=
1
2

+
(
−1

4
+

i
4

)
e−te−it +

(
−1

4
− i

4

)
e−te−it

=
1
2

+
(
−1

4
+

i
4

)
e−t(cos t + i sin t) +

(
−1

4
− i

4

)
e−t(cos t − i sin t)

=
1
2

+
e−t

4
(− cos t − sin t − i sin t + i cos t) +

e−t

4
(− cos t − sin t + i sin t − i cos t)

=
1
2
− e−t

2
(cos t + sin t) (2.112)



INVERSE LAPLACE TRANSFORMATION 45

Example 2.26 Consider the differential equation:

f ′′ + f ′ − 6 f =



0 t < 3
2 3 ≤ t < 5
0 5 ≤ t

(2.113)

with initial conditions f (0) = f ′(0) = 0.

Solution: The first thing to do is to rewrite the right hand side in terms of the Heaviside
function. The key point is that the Heaviside function Ha(t) is zero until you get to a and then
it is one after that. Now the function on the right hand side is zero until we get to three and
then it is two, so it behaves like 2H3(t), however, at five it goes back down to zero, so we have
to take away 2H5(t), in short:

2H3(t) − 2H5(t) =



0 t < 3
2 3 ≤ t < 5
0 5 ≤ t

(2.114)

The first Heaviside function switches on at t = 3 and brings you up to two, the second switches
on at five and brings you back down to zero.

Now, the differential equation is

f ′′ + f ′ − 6 f = 2H3(t) − 2H5(t) (2.115)

with f (0) = f ′(0) = 0 and we take the Laplace transform of both sides:

s2F + sF − 6F =
2
s

(
e−3s − e−5s

)
(2.116)

or
F =

2
s(s + 3)(s − 2)

(
e−3s − e−5s

)
(2.117)

Now, partial fractions has

2
s(s + 3)(s − 2)

= − 1
3s

+
2
15

1
s + 3

+
1
5

1
s − 2

(2.118)

Now,

− 1
3s

+
2

15
1

s + 3
+

1
5

1
s − 2

= L
(
−1

3
+

2
15

e−3t +
1
5

e2t
)

(2.119)

Now, in the expression for F this gets multiplied by various exponential factors, the effect of
this is to delay the answer:

f =
(
−1

3
+

2
15

e−3t+9 +
1
5

e2t−6
)

H3(t) +
(
−1

3
+

2
15

e−3t+15 +
1
5

e2t−10
)

H5(t) (2.120)

Now, here is a similar problem, but with a Dirac delta function:

f ′′ + f ′ − 6 f = δ(t − 4) (2.121)

with f (0) = f ′(0) = 0. Using L[δ(t − a)] = eas this gives

s2F + sF − 6F = e4s (2.122)
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or

F =
e4s

(s + 3)(s − 2)
(2.123)

By partial fractions we have

1
(s + 3)(s − 2)

=
1
5

1
s − 2

− 1
5

1
s + 3

= L
(1

5
e2t − 1

5
e−3t

)
(2.124)

so, the e4s causes a delay of four and we have f (t) =
(

1
5 e2t−8 − 1

5 e−3t+12
)

H4(t).

Example 2.27 Consider
y′′ − 4y′ + 3y = 6t − 8 (2.125)

with initial conditions y(0) = y′(0) = 0.

Solution: If we write Y = L(y) the Laplace transform is

s2Y − 4sY + 3Y =
6
s2 −

8
s
⇒ (s2 − 4s + 3)Y =

6
s2 −

8
s

⇒ Y =
6

s2(s2 − 4s + 3)
− 8

s(s2 − 4s + 3)
(2.126)

Now we have to put this into a form which allows us to take the inverse transform. The second
term isn’t so bad. Since s2 − 4s + 3 = (s − 1)(s − 3) we write

1
s(s − 1)(s − 3)

=
A
s

+
B

s − 1
+

C
s − 3

⇒ (s − 1)(s − 3)A + s(s − 3)B + s(s − 1)C = 1 (2.127)

Thus, choosing s = 0 gives A = 1/3, s = 1 gives B = −1/2 and choosing s = 3 gives C = 1/6.
Thus

1
s(s2 − 4s + 3)

=
1
3s
− 1

2(s − 1)
+

1
6(s − 3)

(2.128)

The other expansion is harder because it has a repeated root: in

1
s2(s − 1)(s − 3)

(2.129)

the s factor appears as a square. To deal with this you have to include a 1/s term and a 1/s2

term in the partial fraction expansion.

1
s2(s − 1)(s − 3)

=
A
s

+
B
s2 +

C
s − 1

+
D

s − 3
⇒ s(s − 1)(s − 3)A + (s − 1)(s − 3)B + s2(s − 3)C + s2(s − 1)D = 1

Now taking s = 0 gives B = 1/3, s = 1 gives C = −1/2 and s = 3 gives D = 1/18. There is no
convenient choice of s that gives A on its own, so we just substitute in any other value, s = 2
say and by putting in the values of B, C and D we get

− 2A − 1
3

+ 2 +
2
9

= 1 (2.130)

and hence A = 4/9. Thus
1

s2(s − 1)(s − 3)
=

4
9s

+
1

3s2 −
1

2(s − 1)
+

1
18(s − 3)

(2.131)



INVERSE LAPLACE TRANSFORMATION 47

Now we can put everything together

Y = 6
(

4
9s

+
1

3s2 −
1

2(s − 1)
+

1
18(s − 3)

)

−8
(

1
3s
− 1

2(s − 1)
+

1
6(s − 3)

)
(2.132)

and if we do the algebra we find Y(s) =
2
s2 +

1
s − 1

− 1
s − 3

Using inverse Laplace transform, we get, y(t) = 2t + et − e3t

2.5 Multiple Choice Questions(MCQ)

1. The inverse transformation of 2s2−4
(s−3)(s2−s−2) . GATE(MA)-14

A) (1 + t)e−t + 7
2 e−3t B) et

3 + te−t + 2t C) 7
2 e3t − e−t

6 − 4
3 e2t D) 7

2 e−3t − e−t

6 − 4
3 e−2t

Ans. (C)

2. If F(s) = tan−1(s) + k is the Laplace transform of some function f on t > 0, then k =

GATE(MA)-07
A) π B) −π2 C) 0 D) π

2
Ans. B)
Hint. L( f (t)) = tan−1(s) + k⇒ f (t) = L−1(tan−1(s) + k) = − sin t

t
⇒ L{− 1

t sin t} = tan−1 s − π
2

3. Given two continuous time signals x(t) = e−t and y(t) = e−2t, which exist for t > 0, the
convolution z(t) = x(t) ? y(t) is GATE(EE)-11
A) e−t − e−2t B) e−3t C) e−t D) e−t + e−2t

Ans. (A) Taking Laplace transformation, we get

L
{
z(t)

}
= L

{
x(t) ? y(t)

}
⇒ Z(s) = X(s) · Y(s) =

1
s + 1

· 1
s + 2

⇒ L−1
{
Z(s)

}
= L−1

{ 1
s + 1

· 1
s + 2

}

⇒ z(t) = L−1
{ 1

s + 1
− 1

s + 2

}
= L−1

{ 1
s + 1

}
− L−1

{ 1
s + 2

}
= e−t − e−2t

4. Consider the Laplace equation in polar form :
∂2u
∂r2 + 1

r
∂u
∂r + 1

r2
∂2u
∂θ2 = 0, 0 < r < a, 0 ≤ θ < 2π subject to the condition u(a, θ) = f (θ), where

f is the given function. Let σ be the separation constant that appears when one uses
the method of separation of variables. Then for solution u(r, θ) to be bounded and also
periodic in θwith period 2π, NET(MS): (June)2013
(a) σ can not negative, (b) σ can be zero and in that case the solution is a constant
(c)σ can be positive and in that case the solution must be an integer (d) the funda-
mental set of solutions is {1, rn sin nθ, rn cos nθ}, where n is a positive integer.
Ans. (a), (b), (c) (d). (Note: All answers are correct.)
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5. The differential equation
∂2u
∂x2 = ∂u

∂t ,u = u(x, t), 0 < x < π, t > 0 with u(0, t) = 0 = u(π, t), t > 0
u(x, 0) = sin x + sin 2x, 0 ≤ x ≤ π. Then
(a) u(x, t)→ 0 as t→ 0 for all x ∈ (0, π)
(b) t2u(x, t)→ 0 as t→ 0 for all x ∈ (0, π)
(c) e1u(x, t) is a bounded function for x ∈ (0, π), t > 0
(d)e2(x, t)→ 0 as t→ 0 for all x ∈ (0, π) NET(MS): (June)2012
Ans. (a), (b), (c).

6. The solution of the ODE d2 y
dx2 + y = 0, x > 0 with y(0) = 1, y′(0) = 0 is equivalent to the

Volterra integral equation NET(MS): (Dec.)2012
where (a) y(x) = 1 +

∫ x

0 (t − x)y(t)dt (b) y(x) = 1 +
∫ x

0 (t + x)y(t)dt
(c) y(x) = 1 +

∫ x

0 xty(t)dt (d) y(x) = 1 +
∫ x

0 (x − t)y(t)dt
Ans. (a).

7. Let y(x) be a continuous solution of the initial value problem y′ + 2y = f (x), y(0) = 0,
where

f (x) = 1, 0 ≤ x ≤ 1

= 0, x > 1

. Then y( 2
3 ) is equal to NET(MS): (June)2015

(a) sinh(1)
e3 (b) cosh(1)

e3 (c) sinh(1)
e2 (d) cosh(1)

e2 .
Ans. (c).

8. If Laplace transformation of f (t) is 5
s + 2s

s2+9 , Then f (0) is equals to
(A) 5 (B) 7 (C) 0 (D)∞
Ans. (B)
Hint. By applying initial value theorem

lim
t→0

f (t) = lim
s→∞

sF(s) = lim
s→∞

s
(5

s
+

2s
s2 + 9

)
= 5 + 2 = 7

9. If Laplace transformation of f (t) is F (s) = 2
s(s+1) . Then f (∞) is equals to

A) 0 (B) 2 (C) 1 (D) ∝ GATE(ECE)-03
Ans. (B)
Hint. By applying final value theorem

lim
t→∞

f (t) = lim
s→0

sF(s) = lim
s→0

s
( 2

s(s + 1)

)
= 2

10. If F(s) =
2(s+1)

s2+4s+7 . Then the initial and final values of f (t) are respectively GATE(ECE)-11
(A) 0, 2 (B) 2, 0 (C) 0, 2/7 (D) 2/7, 0
Ans. (B)
Hint. By applying initial value theorem

lim
t→0

f (t) = lim
s→∞

sF(s) = lim
s→∞

s
( 2(s + 1)

s2 + 4s + 7

)
= 2
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By applying final value theorem

lim
t→∞

f (t) = lim
s→0

sF(s) = lim
s→0

s
( 2(s + 1)

s2 + 4s + 7

)
= 0

11. If L[ f (t)] = k
s(s2+4) . If lim

t→∞
f (t) = 1, then k is given by

(A) 4 (B) zero (C) 0 < k < 12 (D) 5 < k < 12
Ans. (A)
Hint. By applying final value theorem

lim
t→∞

f (t) = lim
s→0

sF(s) ⇒ lim
s→0

s
( k

s(s2 + 4)

)
= 1 ⇒ k = 4.

12. The Laplace transformation of f (t) is given by F(s) = 2
s(s+1) . As t −→ ∞ , the value of f (t)

tends to ECE-2003
(A) 0 (B) 1 (C) 2 (D)∞
Ans. (C)
Hint. By applying final value theorem

lim
t→∞

f (t) = lim
s→0

sF(s) = lim
s→0

s
( 2

s(s + 1)

)
= 2

13. Use Laplace transformation the value of
∫ ∞

0 te−2t sin tdt is
A) 1

25 B) 2
25 C) 3

25 D) 4
25

Ans. (D)

Hint. Since L{sin t} = 1
s2+1 and L{t sin t} = − d

ds

(
1

s2+1

)
= 2s

(s2+1)2 = f (s). Now from the

definition of Laplace transformation
∫ ∞

0
e−st f (t)dt = f (s) ⇒

∫ ∞

0
t sin te−2tdt = f (2) =

2 × 2
(22 + 1)2 =

4
25

14. The inverse Laplace Transform of s2

(s−3)3 can be written as e3t

2 [At2 + Bt + C]. The values of
A,B and C, respectively are GATE(AE)-11
(A) 3, 5 and 7 (B) 2, 10 and 12 (C) 10, 12 and 4 (D) 9, 12 and 2.
Ans. (D)
Hint. L{ e3t

2 [At2 + Bt + C]} = A
(s−3)3 + B

2(s−3)2 + C
2(s−3)

15. The Green function G in x, t of the boundary value problem d2 y
dx2 − 1

x
dy
dx = 1 with y(0) =

y(1) = 0 is

G(x, t) = f1(x, t), x ≤ t

= f2(x, t), t ≤ x

where NET(MS): (Dec.)2011
(a) f1(x, t) = − 1

2 t(1 − x2), f2(x, t) = − 1
2t x

2(1 − t2)
(b) f1(x, t) = − 1

2x t2(1 − x2), f2(x, t) = − 1
2t x

2(1 − t2)
(c) f1(x, t) = − 1

2t x
2(1 − t2), f2(x, t) = − 1

2t t(1 − x2)
(d) f1(x, t) = − 1

2t x
2(1 − t2), f2(x, t) = − 1

2t t
2(1 − x2).

Ans. (a) and (c).
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16. If f (t) = L−1
[

3s+1
s3+4s2+(k−3)s

]
. If lim

t→∞
f (t) = 1. Then value of k is ECE-2010

(A) 1 (B) 2 (C) 3 (D) 4
Ans. (B)
Hint. By applying final value theorem

lim
t→∞

f (t) = lim
s→0

sF(s) ⇒ lim
s→0

s
( 3s + 1

s3 + 4s2 + (k − 3)s

)
= 1

or
1

k − 3
= 1 ⇒ k = 2

17. The boundary value problem d2 y
dx2 = f (x), x ∈ (0, 1) with y(0) = y(1) = 0 is given by

y(x) =
∫ 1

0 G(x, ξ) f (ξ)dξ NET(MS): (Dec.)2012

where (a) G(x, ξ) = x(ξ − 1), x ≤ ξ
= ξ(x − 1), x > ξ

(b) G(x, ξ) = x2(ξ − 1), x ≤ ξ
= ξ2(x − 1), x > ξ

(c) G(x, ξ) = x(ξ2 − 1), x ≤ ξ
= ξ(x2 − 1), x > ξ

(d) G(x, ξ) = sin x(ξ − 1), x ≤ ξ
= sin ξ(x − 1), x > ξ

Ans. (a).

18. The solution of the initial value problem
y′′ + 2y′ + 10y = 6δ(t), y(0) = y′(0) = 0

Where δ(t) denotes the Dirac-delta function , is
(a) 2et sin 3t , (b) 6et sin 3t (c) 2e−t sin 3t , (d) 6e−t sin 3t. GATE(MA)-12
Ans. (c).

19. Let y(t) be the continuous function on [0, ∞) whose Laplace Transform exists. If y(t)
satisfies

t∫

0

(1 − cos(t − u))y(u)du = t4,

then y(1) is equal to
(A) 20 (B) 24 (C) 28 (D) 30 GATE(MA)-15
Ans. (C)
Hint. Using convolution Theorem, we get, L{1−cos t}·L{y(t)} = L{t4} ⇒ ( 1

s − s
s2+1 )Y(s) = 24

s5 .
Using inverse Laplace transform, we get, y(t) = 24t + 4t3.

20. Let y(t) be the continuous function on [0, ∞) if y(t) = t(1 − 4
t∫

0
y(x)dx) + 4

t∫
0

xy(x)dx, then

π
2∫

0
y(t)dt is equal to GATE(MA)-16

Ans. 1
2 .

Hint. Using Laplace Transformation, we get, Y(s) = 1
s2 + 4 d

ds

(
Y(s)

s

)
+ 4 L{ty(t)}

s = 1
s2 + 4 Y′(s)

s −
4 Y(s)

s2 − 4 Y′(s)
s ⇒ Y(s) = 1

2 · 2
s2+4 . Using inverse Laplace transform, we get, y(t) = sin 2t

2 .

21. The solution of the integral equation y(x) = x +
x∫

0
sin(x − t)y(t)dt, is GATE(MA)-13
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(A) x2 + x3

3 (B) x − x3

3! (C) x + x3

3! (D) x2 + x3

3! .
Ans. (C)

22. Consider the integral equation y(x) = x3 +
x∫

0
sin(x − t)y(t)dt, x ∈ [0, π]. Then the value of

y(1) is NET(JUNE)-16
(A) 19

20 (B) 1 (C) 17
20 (D) 21

20 .
Ans. (D)

23. Let y1(x) and y2(x) be solutions of

x2y
′′

+ y
′
+ (sin x)y = 0

which satisfy the boundary conditions y1(0) = 0, y′1(1) = 1 and y2(0) = 1, y′2(1) = 0
respectively. Then, GATE(MA)-03
A) y1 and y2 do not have common zeros B) y1 and y2 have common zeros
C) either y1 or y2 has a zero of order 2 D) both y1 and y2 have zeros of order 2
Ans. B)

24. The initial value problem

x
d2y
dx2 +

dy
dx

+ xy = 0, y(0) = 1,
(dy

dx

)
x=0

= 0

has GATE(MA)-06

A) a unique solution B) no solution
C) infinitely many solution D) two linearly independent solutions.
Ans. B)

2.6 Review Exercises

1. Prove that L−1
{

1
(s−4)2(s+3)

}
= 3te4t − 1

7 (e4t − e−37).

2. Prove that L−1
{

4s+5
(s2+9)2

}
= t sin t

2 .

3. Using Convolution theorem, prove that
∫ t

0 sin x cos(t − x)dx = t sin t
2

4. Prove that L−1
{

1
(s2+a2)(s2+b2)

}
= b sin at−a sin bt

ab(b2−a2)

5. Find the boundary solution of ∂y
∂t =

∂2 y
∂x2 , x > 0, t > 0 given that y(0, t) = 1 and y(x, 0) = 0.

Ans. y(x, t) = er f c
(

x
2
√

2

)

6. Find the boundary solution of ∂y
∂x −

∂y
∂t = 1 − e−t, 0 < x < 1, t > 0 given that y(x, 0) = x.

Ans. y(x, t) = x + 1 − e−t

7. Show that the integral of the equation (D2 + 1)y = 0 with y(0) = 1, Dy(0) = 0 is given by
y(t) = cos t where D ≡ d

dt .
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8. Solve (D2 − 4D + 4)x − y = 0, (D2 + 4D + 4)y − 25x = 16et.
Ans. x = c1e3t + c2e−3t + c3 cos t + c4 sin t − et, y = c1e3t + 25c2e−3t + (3c3 − 3c4) cos t + (3c4 +

4c3) sin t − et

9. Show that the integral of the equations Dx + 2y = 0, Dy = x is given by x2 + y2 + 2c = 0.
C.U(Hons.)-1989.

10. (D2 + 1)x + (D + 1)y = t, 2x + (D + 1)y = 0, given that x = y = 0 at t = 0. B.U(Hons.)-1999
Ans. x = −2et + 2e−t − t, y = 2(et − 2te−t + t − 1).

11. Use Laplace transform to solve ∂u
∂t = 3 ∂

2u
∂x2 , where u(π2 , t) = 0, ∂u

∂x x=0 = 0 and u(x, 0) =

30 sin 5x.
Ans. u(x, t) = 30 cos 5xe−70t.

12. Use Laplace transform to solve ∂2u
∂t2 = a2 ∂2u

∂x2 , t > 0, x > 0 where u(x, 0) = 0, ∂u(x,0)
∂t = 0 ,

u(x, t) = 0 as x→∞ and u(0, t) = 0.
Ans. u(x, t) = (t − x

a )H(t − x
a ).

13. Use Laplace transform to solve ∂2 y
∂x2 − ∂2 y

∂t2 = xt where y(x, 0) = 0 =
∂y(x,0)
∂t and y(0, t) = 0.

Ans. y(x, t) = − xt3

6

14. Use Laplace transform to solve ∂2 y
∂t2 = 9 ∂

2 y
∂x2 where y(0, t) = 0, y(2, t) = 0, and y(x, 0) =

5 sin 2πx, ∂y(x, 0)
∂t = 0.

Ans. y(x, t) = 5 sin 2πx cos 6πt

15. Use Laplace transform to solve ∂y
∂x = y + 2 ∂y

∂t given that y(x, 0) = 6e−3x which is bounded
for x > 0, t > 0.
Ans. y(x, t) = e−(3x+2t)

16. Use Laplace transform to solve d2 y
dx2 + 4y = sin 2x given that y(0) = 1, dy(0)

dx = 0.
Ans. y(x) = cos 2x + 1

8 sin 2x − 1
4 x cos 2x.

17. Use Laplace transform to solve x2 d2 y
dx2 − 3x dy

dx + 4y = 2x2 given that y(1) = 1, dy(1)
dx = 0.

Ans. y = (1 − 3 log x)x2 + x2(log x)2.

18. Use Laplace transform to solve d2 y
dx2 − 2 dy

dx + y = xex given that y(0) = 1, dy(0)
dx = 0.

Ans. y = (1 − x)ex + 1
6 x3ex.

19. Use Laplace transform to solve x2 d2 y
dx2 + 4x dy

dx + 2y = ex given that y(1) = 0, dy(1)
dx = 0.

Ans. y(x) = − e
x + ex

x2 .

20. Use Laplace transform to solve y′′−4y′+3y = 6t−8 with initial conditions y(0) = y′(0) = 0.
Ans. y = 2t + et − e3t

21. Use Laplace transform to solve (D2 − 7D + 6)y = 2e3x with y = 1, dy
dx = 0 at x = 0.

Ans. y = 7
5 ex − 1

15 e6x − 1
3 e3x.



Chapter 3

Series Solution of Ordinary
Differential Equations
3.1 Introduction

Various analytical methods have been discussed so far for solving ordinary differential equa-
tions to obtain exact solutions. However, in applied mathematics, science, and engineering
applications, there are a large number of differential equations, especially those with variable
coefficients, that cannot be solved exactly in terms of elementary functions, such as exponential,
logarithmic, and trigonometric functions. For many of these differential equations, it is possible
to find solutions in terms of infinite series. The main objective of this chapter is to present the
essential techniques for solving such ordinary differential equations, in particular second-order
linear ordinary differential equations with variable coefficients. A linear differential equation
of order 2 can be written as

d2y
dx2 + p1(x)

dy
dx

+ p0(x)y = 0 (3.1)

Where p0(x), p1(x) are functions in x.

3.2 Review of Power Series
A power series is an infinite series of the form

∞∑

n=0

an(x − x0)n = a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + · · · (3.2)

where a0, a1, a2, a3 · · · are constants and x0 is a fixed number. This series usually arises as the
Taylor series of some function f (x). If x0 = 0, the power series becomes

∞∑

n=0

anxn = a0 + a1x + a2x2 + a3x3 + · · ·
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3.3 Convergence of a Power Series

Power series (3.2) is convergent at x0 if the

lim
N→∞

N∑

n=0

an(x − x0)n

exists and finite. Otherwise, the power series is divergent. A power series will converge for
some values of x and may diverge for other values. Series (3.2) is always convergent at x = x0.
If power series (3.2) is convergent for all x in the interval |x − x0| < r and is divergent whenever
|x − x0| > r where 0 ≤ r < ∞, then r is called the radius of convergence of the power series.
Therefore, the radius of convergence r is given by

r =
1

lim|an| 1n
or r = lim

n→∞
| an

an+1
|

if this limit exists. Three very important power series are

1
1 − x

=

∞∑

n=0

xn , −1 < x < 1,

ex =

∞∑

n=0

xn

n!
, −∞ < x < ∞,

cos x =

∞∑

n=0

(−1)n x2n

(2n)!
, −∞ < x < ∞.

3.4 Operations of Power Series

Suppose functions f (x) and g(x) can be expanded into power series as

f (x) =

∞∑

n=0

an(x − x0)n , for |x − x0| < r1,

g(x) =

∞∑

n=0

bn(x − x0)n , for |x − x0| < r2.

Then, for |x − x0| < r, r = min(r1, r2),

f (x) ± g(x) =

∞∑

n=0

(an ± bn)(x − x0)n ,

i.e., the power series of the sum or difference of the functions can be obtained by termwise
addition and substraction. For multiplication,

f (x)g(x) =
[ ∞∑

n=0

an(x − x0)n
][ ∞∑

m=0

bm(x − x0)n
]

=

∞∑

n=0

( n∑

m=0

anbn−m

)
(x − x0)n
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and for division

f (x)
g(x)

=

∞∑
n=0

an(x − x0)n

∞∑
m=0

bm(x − x0)n
=

∞∑

n=0

cn(x − x0)n

where
∞∑

n=0

an(x − x0)n =
[ ∞∑

n=0

bn(x − x0)n
][ ∞∑

n=0

cn(x − x0)n
]
,

in which cn can be obtained by expanding the right-hand side and comparing coefficients of
(x − x0)n,n = 0, 1, 2, · · · .
If the power series of f (x) is convergent in the interval |x − x0| < r1, then f (x) is continuous and
has continuous derivatives of all orders in this interval. The derivatives can be obtained by
differentiating the power series termwise

f ′(x) =

∞∑

n=1

nan(x − x0)n−1 , for |x − x0| < r1,

The integral of f (x) can be obtained by integrating the power series termwise

∫
f (x)dx =

∞∑

n=0

an(x − x0)n+1

n + 1
+ C , for |x − x0| < r1,

3.5 Analytic Function

Definition 3.1 (Analytical Function) A function f defined in the interval I containing x0 is

said to be analytic at x0 if f (x) can be expressed as a power (Taylor) series f (x) =
∞∑

n=0
an(x−x0)n,

which has a positive radius of convergence.

Example 3.1 Prove that if a function f defined in the interval I containing x0 is said to be
analytic at x0, then lim

x→x0
f (x) exist and finite.

Proof: Since the function f (x) is analytic at x0, then f (x) =
∞∑

n=0
an(x − x0)n, |x − x0| < r, for some

r > 0. So, lim
x→x0

f (x) = lim
x→x0

∞∑
n=0

an(x − x0)n = a0. Hence lim
x→x0

f (x) exist and finite.

Example 3.2 Determine the radius of convergence for
∞∑

n=0

xn

n .

Solution: r = lim
n→∞
| an
an+1
| = lim

n→∞
| n+1

n | = 1.

Example 3.3 Determine the radius of convergence for
∞∑

n=0

xn

n!

Solution: r = lim
n→∞
| an
an+1
| = lim

n→∞
| (n+1)!

n! | = ∞.
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3.6 Ordinary Point
Consider the nth-order linear ordinary differential equation

yn(x) + pn−1(x)yn−1(x) + pn−2(x)yn−2(x) + · · · + p0(x)y(x) = f (x).

Definition 3.2 (Ordinary Point) A point x0 is called an ordinary point of the given differential
equation if each of the coefficients p0(x), p1(x), · · · , pn−1(x) and f (x) are analytic at x = x0, i.e.,
pi(x), for i = 0, 1, · · · ,n − 1, and f (x) can be expressed as power series about x0 that are
convergent for |x − x0| < r, r > 0, i.e.,

pi(x) =

∞∑

n=0

pi, n(x − x0)n , f (x) =

∞∑

n=0

fn(x − x0)n.

3.7 Singularity at finite Point

Consider the nth-order linear homogeneous ordinary differential equation

yn(x) + pn−1(x)yn−1(x) + pn−2(x)yn−2(x) + · · · + p0(x)y(x) = 0.

Definition 3.3 (Singular Point)A point x0 is called a singular point of the given differential
equation if it is not an ordinary point, i.e., not all of the coefficients p0(x), p1(x), · · · , pn−1(x) are
analytic at x = x0.

Definition 3.4 (Regular Singular Point)A point x0 is a regular singular point of the given
differential equation if it is not an ordinary point (i.e., not all of the coefficients pk(x) are
analytic) but all of (x − x0)n−kpk(x) are analytic for k = 0, 1, · · · ,n − 1.

Definition 3.5 (Irregular Singular Point) A point x0 is an irregular singular point of the given
differential equation if it is neither an ordinary point nor a regular singular point.

Alternative Text for second order ODEs

A point x = x0 of the differential equation (3.1) is called ordinary point then all lim
x→x0

pk(x), k =

0, 1 are exist and finite. Otherwise the said point is called singular point.
A singular point x = x0 of the differential equation (3.1) is called regular singular point if all
lim
x→x0

(x − x0)2−kpk(x), k = 0, 1 are exist and finite. A singular point which is not regular called

irregular singular point.

Example 3.4 Discuss the ordinary and singular point of the differential equation
2x2 d2 y

dx2 + 7x(x + 1) dy
dx − 3y = 0.

Solution: The given differential equation 2x2 d2 y
dx2 + 7x(x + 1) dy

dx − 3y = 0, can be written as
d2 y
dx2 +

7x(x+1)
2x2

dy
dx − 3

2x2 y = 0. The given differential equation is compare with the differential
equation (3.1) then p1(x) =

7x(x+1)
2x2 and p0(x) = − 3

2x2 . Since neither lim
x→0

p1(x) nor lim
x→0

p0(x) does

exist. So p1(x) and p0(x) are not analytic at x = 0. Hence, x = 0 is the singular point of the
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said differential equation. Now lim
x→x0

(x − x0)p1(x) = lim
x→0

(x − 0) 7x(x+1)
2x2 = 7

2 and lim
x→x0

(x − x0)2p0(x) =

lim
x→0

(x − 0)2
(
−3
2x2

)
= − 3

2 are both exist and finite so the point x = 0 is a regular singular point. All

points x (x , 0) are ordinary points.

3.8 Singularity at infinity

Singularity Test at Infinity: To determine whether the point at infinite is a singular point or
not, we transform the equation by x = 1

t . Then

dy
dx

= −t2 dy
dt

and
d2y
dx2 = t4 d2y

dt2 + 2t3 dy
dt

Then the differential equation (3.1) becomes

d2y
dt2 +

(2
t
− 1

t2 p1(t−1)
)dy

dt
+

1
t4 p0(t−1) = 0 (3.3)

If t = 0 is a singular point of equation (3.3) then the origin equation (3.1) has a singularity at
x = ∞.

Example 3.5 Show that the equation

d2y
dx2 −

2x
1 − x2

dy
dx

+
n(n + 1)
1 − x2 y = 0 (3.4)

has a singularity at x = ∞.

Solution: Substituting x = 1
t to the given equation. Then

dy
dx

= −t2 dy
dt

and
d2y
dx2 = t4 d2y

dt2 + 2t3 dy
dt

Using these substitution the given equation reduces to

t4 d2y
dt2 +

2t3

t2 − 1
dy
dt

+
n(n + 1)t2

t2 − 1
y = 0 (3.5)

Since t = 0 is a singular point of equation (3.5), so x = ∞ is a singular point of the given
differential equation (3.4).

3.9 Series Solution about an Ordinary Point

Theorem 3.1 (Existence Theorem for Analytic Coefficients) Let x0 be any real number and
suppose that the coefficients p0(x), p1(x), · · · , pn−1(x) in
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f (D)y = yn(x) + pn−1(x)yn−1(x) + pn−2(x)yn−2(x) + · · · + p0(x)y(x)

have convergent power series expansions in powers of x − x0 on an interval

|x − x0| < r, r > 0.

If α1, α2, · · · , αn are any n constants, there exists a solution φ of the problem

f (D)y = 0, y(x0) = α1, y′(x0) = α2, · · · , y(n−1)(x0) = αn,

with a power series expansion

φ(x) =

∞∑

k=0

ck(x − x0)k

convergent for |x − x0| < R where the radius of convergence R ≥ r.

Theorem 3.2 Suppose that x0 is an ordinary point of the nth-order linear ordinary differential
equation

yn(x) + pn−1(x)yn−1(x) + pn−2(x)yn−2(x) + · · · + p0(x)y(x) = f (x).

where the coefficients p0(x), p1(x), · · · , pn−1(x) and f (x) are analytic at x = x0 and each can be
expressed as a power series about x0 convergent for |x − x0| < r, r > 0. Then every solution
of this differential equation can be expanded in one and only one way as a power series in
(x − x0)

yi(x) =

∞∑

n=0

ai, n(x − x0)n , |x − x0| < R

where the radius of convergence R ≥ r.

In particular, the series solution about the ordinary point x = x0 of second order ODE

Theorem 3.3 Suppose that x0 is an ordinary point of the second order linear ordinary differ-
ential equation (3.1), i.e., the coefficients p0(x), p1(x) are analytic at x = x0 and then it has two
non-trivial linearly independent power series solutions of the form

∞∑

n=0

an(x − x0)n, |x − x0| < R, (3.6)

for some R > 0, where an are constants and these power series converge in some interval
|x − x0| < R, (R > 0) about x0 (R being the radius of convergence of the power series).

Proof.: In order to get the coefficient an’s in (3.6) we take

y(x) =

∞∑

n=0

an(x − x0)n, |x − x0| < R (3.7)
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Differentiating twice in a succession (3.7) gives

y
′
(x) =

∞∑

n=1

nan(x − x0)n−1, |x − x0| < R

y
′′
(x) =

∞∑

n=2

n(n − 1)an(x − x0)n−2, |x − x0| < R.

Putting these values y, y′ and y′′ in (3.1) we get an equation of the form

A0 + A1(x − x0) + A2(x − x0)2 + · · · + An(x − x0)n + · · · = 0 (3.8)

where the coefficients A0,A1, · · · ,An, · · · are some function of the coefficient of a0, a1, · · · , an, · · · .
Since (3.8) is an identity, all the coefficient A0,A1, · · · ,An, · · · of (3.8) must be zero, i.e

A0 = 0,A1 = 0, · · · ,An = 0, · · · (3.9)

Solving (3.9) we obtain the coefficient of (3.6) in terms of a0 and a1. Substituting the coefficients
in (3.7) we get two independent series solution of (3.1) in powers of (x − x0) in |x − x0| < R.

Theorem 3.4 The power series representation y(x) =
∞∑

n=0
an(x − x0)n about an ordinary point

x = x0 of the differential equation a0(x) d2 y(x)
dx2 + a1(x) dy(x)

dx + a2(x)y(x) = 0 always converges. The
maximum possible radius of convergence R is the distance from x0 to the nearest singular
point of the differential equation and the interval of convergence is (R − x0, R + x0).

Example 3.6 Solve in series the equation

(x2 + 1)
d2y
dx2 + x

dy
dx
− y = 0 (3.10)

Solution: The given differential equation can be written as

d2y
dx2 +

x
x2 + 1

dy
dx
− y

x2 + 1
= 0 (3.11)

Comparing the above differential equation with (3.1) we have p1(x) = x
x2+1 and p0(x) = − 1

x2+1 .
Since, all the coefficients p0(x) and p1(x) are analytic at x = 0, i.e., pi(x) for i = 0, 1 can be expressed
as power series about x = 0 that are convergent for −1 < x < 1, i.e. for i = 0, 1,

pi(x) = (−1)i+1xi(1 + x2)−1 = (−1)i+1xi(1 − x2 + x4 − x6 + · · · ), −1 < x < 1.

So x = 0 is the ordinary point of the said differential equation and let

y(x) =

∞∑

n=0

an(x − x0)n =

∞∑

n=0

anxn, −1 < x < 1 (3.12)

be the series solution of (3.11). Differentiating twice in a succession (3.12) gives

y
′
(x) =

∞∑

n=1

nanxn−1, −1 < x < 1

and y
′′
(x) =

∞∑

n=2

n(n − 1)anxn−2, −1 < x < 1
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Putting these values y, y′ and y′′ in (3.10) we get

(x2 + 1)
∞∑

n=2

n(n − 1)anxn−2 + x
∞∑

n=1

nanxn−1 −
∞∑

n=0

anxn = 0

⇒
∞∑

n=2

n(n − 1)anxn +

∞∑

n=2

n(n − 1)anxn−2 +

∞∑

n=1

nanxn −
∞∑

n=0

anxn = 0

⇒
∞∑

n=2

n(n − 1)anxn +

∞∑

n=0

(n + 1)(n + 2)an+2xn +

∞∑

n=1

nanxn −
∞∑

n=0

anxn = 0

We shift the index of summation in the second series by 2, replacing n with n + 2 and using the
initial value n = 0, and we shift the index of summation in the third series by 1, replacing n
with n + 1 and using the initial value n = 0.

2a2 − a0 + 6a3x +

∞∑

n=2

{n(n − 1)an + (n + 1)(n + 2)an+2 + nan − an}xn = 0

Equating the coefficients of various power of x to zero, we get

2a2 − a0 = 0⇒ a2 =
a0

2
, 6a3 = 0⇒ a3 = 0,

and n(n − 1)an + (n + 1)(n + 2)an+2 + nan − an = 0

⇒ an+2 = −n − 1
n + 2

an for all n ≥ 2

Now putting n = 2, 3, 4, · · · successively in the above recurrence relation we get

a4 = −1
4

a2 = −1
8

a0, a5 = −2
3

a3 = 0, a6 = −1
2

a4 =
1
16

a0

a7 = −4
7

a5 = 0, a8 = −5
8

a6 = − 5
128

a0 and so on

Substituting the values of a0, a1, a2, · · · in (3.12) we get the required solution as

y(x) = a0{1 +
x2

2
− x4

8
+

x6

16
− 5x8

128
+ · · · } + a1x, −1 < x < 1

where a0 and a1 are arbitrary constants.

Example 3.7 Find a power series solution of the equation

(x2 − 1)
d2y
dx2 + 3x

dy
dx

+ xy = 0 (3.13)

Given that y(0) = 4 and y′ (0) = 6.

Solution: The given differential equation can be written as

d2y
dx2 +

3x
x2 − 1

dy
dx

+
xy

x2 − 1
= 0 (3.14)



SERIES SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 61

Comparing the above differential equation with (3.1) we have, p1(x) = 3x
x2−1 and p0(x) = x

x2−1 .
Since, all the coefficients p0(x) and p1(x) are analytic at x = 0, i.e., pi(x) for i = 0, 1 can be expressed
as power series about x = 0 that are convergent for −1 < x < 1, i.e. for i = 0, 1,

pi(x) = −3ix(1 − x2)−1 = −3ix(1 + x2 + x4 + x6 + · · · ), −1 < x < 1.

So x = 0 is the ordinary point of the said differential equation. Since the initial value of (3.13)
are prescribed at x = 0 and x = 0 is an ordinary point, hence we shall find the required solution
near x = 0, i.e in powers of x. So let

y(x) =

∞∑

n=0

an(x − x0)n =

∞∑

n=0

anxn, −1 < x < 1 (3.15)

be the series solution of (3.14). Differentiating twice in a succession (3.15) gives

y
′
(x) =

∞∑

n=1

nanxn−1, −1 < x < 1 (3.16)

and y
′′
(x) =

∞∑

n=2

n(n − 1)anxn−2, −1 < x < 1

Putting these values y, y′ and y′′ in (3.13) we get

(x2 − 1)
∞∑

n=2

n(n − 1)anxn−2 + 3x
∞∑

n=1

nanxn−1 + x
∞∑

n=0

anxn = 0

⇒
∞∑

n=2

n(n − 1)anxn −
∞∑

n=2

n(n − 1)anxn−2 + 3
∞∑

n=1

nanxn +

∞∑

n=0

anxn+1 = 0

⇒
∞∑

n=2

n(n − 1)anxn −
∞∑

n=0

(n + 1)(n + 2)an+2xn + 3
∞∑

n=1

nanxn +

∞∑

n=1

an−1xn = 0

We shift the index of summation in the second series by 2, replacing n with n + 2 and using the
initial value n = 0. We shift the index of summation in the fourth series by -1, replacing n by
n − 1 and using the initial value n = 1.

−2a2 − 6a3x + 3a1x + a0x +

∞∑

n=2

{
n(n − 1)an − (n + 1)(n + 2)an+2 + 3nan + an−1

}
xn = 0.

Equating the coefficients of various power of x to zero, we get

a2 = 0, −6a3 + 3a1 + a0 = 0⇒ a3 =
3a1 + a0

6

and n(n − 1)an − (n + 1)(n + 2)an+2 + 3nan + an−1 = 0 ⇒ an+2 =
n(n + 2)an + an−1

(n + 1)(n + 2)
∀n ≥ 2

This last condition is called Recurrence formula. Given that y(0) = 4 and y′ (0) = 6. Hence
putting x = 0 in (3.15) and (3.16) we get

a0 = 4, a1 = 6

and a3 =
3a1 + a0

6
=

3 × 6 + 4
6

=
11
3
.
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Now putting n = 2, 3, 4, · · · successively in the above recurrence formula we get

a4 =
8a2 + a1

12
=

8 × 0 + 6
12

=
1
2
, a5 =

15a3 + a2

20
=

15 × 11
3 + 0

20
=

11
4

a6 =
24a4 + a3

30
=

24 × 1
2 + 11

3

30
=

47
90

and so on

Substituting the values of a0, a1, a2, · · · in (3.15) the required solution is

y(x) = 4 + 6x + 11
3 x3 + 1

2 x4 + 11
4 x5 + 47

90 x6 + · · · , −1 < x < 1.

Example 3.8 Solve 2 d2 y
dx2 + x dy

dx + y = 0 in powers of (x − 1).

Solution: The given differential equation is

2
d2y
dx2 + x

dy
dx

+ y = 0 (3.17)

Since x = 1 is an ordinary point so let

y(x) =

∞∑

n=0

an(x − x0)n =

∞∑

n=0

an(x − 1)n, −∞ < x < ∞ (3.18)

be the series solution of (3.17). We can simplify the calculation of the coefficient by translating
the center of the expansion from x = 1 to t = 0. This is accomplished by the substitution x−1 = t
or x = t + 1, then dt

dx = 1 or dt = dx. Now

dy
dx

=
dy
dt
.
dt
dx

=
dy
dt

and
d2y
dx2 =

d
dx

(
dy
dx

) =
d
dx

(
dy
dt

) =
d
dt

(
dy
dt

)
dt
dx

=
d2y
dt2 .

So the differential equation (3.17) transform to

2
d2y
dt2 + (t + 1)

dy
dt

+ y = 0 (3.19)

So (3.18) also transform to

y(t) =

∞∑

n=0

antn, −∞ < t < ∞ (3.20)

Differentiating twice in a succession (3.20) gives

y
′
=

∞∑

n=1

nantn−1 and y
′′

=

∞∑

n=2

n(n − 1)antn−2

Putting these values y, y′(t) and y′′ (t) in (3.20) we get

2
∞∑

n=2

n(n − 1)antn−2 + (t + 1)
∞∑

n=1

nantn−1 +

∞∑

n=0

antn = 0

⇒ 2
∞∑

n=2

n(n − 1)antn−2 +

∞∑

n=1

nantn +

∞∑

n=1

nantn−1 +

∞∑

n=0

antn = 0

⇒ 2
∞∑

n=0

(n + 1)(n + 2)an+2tn +

∞∑

n=1

nantn +

∞∑

n=0

(n + 1)an+1tn +

∞∑

n=0

antn = 0
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We shift the index of summation in the first series by 2, replacing n with n + 2 and using the
initial value n = 0. We shift the index of summation in the third series by 1, replacing n by n + 1
and using the initial value n = 0.
Since we want to express everything in only one summation sign, we have to start the summa-
tion at n = 1 in every series,

4a2 + a1 + a0 +

∞∑

n=1

{2(n + 1)(n + 2)an+2 + (n + 1)an + (n + 1)an+1}tn = 0

Equating the coefficients of various power of t to zero, we get

4a2 + a1 + a0 = 0⇒ a2 = −a1 + a0

4

and 2(n + 1)(n + 2)an+2 + (n + 1)an + (n + 1)an+1 = 0 ⇒ an+2 = −an + an+1

2(n + 2)
∀n ≥ 1

This last condition is called Recurrence formula. Now putting n = 1, 2, 3, 4, · · · successively in
the above recurrence formula we get,

a3 = −a1 + a2

6
= −a1 − a1+a0

4

6
= −3a1 − a0

24

a4 = −a2 + a3

8
= −−

a1+a0
4 − 3a1−a0

24

8
=

9a1 + 5a0

192
and so on

Substituting the values of a0, a1, a2, · · · in (3.20) the required solution is

y(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + · · · , −∞ < t < ∞
⇒ y(t) = a0 + a1t − a1 + a0

4
t2 − 3a1 − a0

24
t3 +

9a1 + 5a0

192
t4 − · · · , −∞ < t < ∞

⇒ y(t) = a0(1 − 1
4

t2 +
1
24

t3 +
5

192
t4 − · · · ) + a1(t − 1

4
t2 − 1

8
t3 +

9
192

t4) − · · · ,
in −∞ < t < ∞. Now putting t = x − 1, we get

⇒ y(x) = a0

{
1 − 1

4
(x − 1)2 +

1
24

(x − 1)3 +
5

192
(x − 1)4 − · · ·

}

+a1

{
(x − 1) − 1

4
(x − 1)2 − 1

8
(x − 1)3 +

9
192

(x − 1)4 − · · ·
}
, −∞ < x < ∞

where a0 and a1 are arbitrary constants.

3.10 Series solution about regular Singular point x = x0 (Frobe-
nius Method)

Theorem 3.5 If the point x0 is a regular singular point of the differential equation a0(x) d2 y(x)
dx2 +

a1(x) dy(x)
dx + a2(x)y(x) = 0, then it has at least one non-trivial solution of the form y(x) =

|x − x0|m
∞∑

n=0
cn(x − x0)n, and this solution is valid in some interval 0 < |x − x0| < R (where m is

a certain (real or complex) constant and R > 0).
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If x = 0, (x0 = 0) is regular singular point, we shall use the Frobenius method to find the
series solution about x = 0. Consider the differential equation of the form

d2y
dx2 +

P(x)
x

dy
dx

+
Q(x)

x2 y = 0 (3.21)

where the function P(x) and Q(x) are analytic for all |x| < R, R > 0. Then the following method
of solving (3.21) is called Frobenius method. We assume a trial solution

∞∑

n=0

anxn+r, a0 , 0, 0 < x < R (3.22)

In order to get the coefficient an’s in (3.22) we take

y(x) =

∞∑

n=0

anxn+r, 0 < x < R (3.23)

Differentiating twice in a succession (3.23) gives

y
′
(x) =

∞∑

n=0

(n + r)anxn+r−1 and y
′′
(x) =

∞∑

n=0

(n + r)(n + r − 1)anxn+r−2

Since P(x) and Q(x) are analytic at x = 0, we can write

P(x) = c0 + c1x + c2x2 + · · · and Q(x) = d0 + d1x + d2x2 + · · ·

Putting these values y, y′ , y′′ , P(x) and Q(x) in (3.21) and then multiplying both sides by x2, we
get

∞∑

n=0

(n+ r)(n+ r−1)anxn+r + (c0 + c1x+ · · · )
∞∑

n=0

(n+ r)anxn+r + (d0 +d1x+ · · · )
∞∑

n=0

anxn+r = 0 (3.24)

Since (3.24) is an identity, we can equate to zero the coefficient of various powers of x. This will
give us a system of equations involving the unknowns coefficients an. The smallest power of x
is xr, and the corresponding equation is

[r(r − 1) + c0r + d0]a0 = 0

Since by assumption a0 , 0, we obtain

r2 + (c0 − 1)r + d0 = 0

This important equation is known as indicial equation of (3.21). Solving this quadratic equation
for r , one obtains two roots r1 and r2. Then there will be four different possibilities which are
discussed in the following cases.

Case-I: Roots of the indicial equation unequal and not differ by an integer.
Let r1 and r2 be the roots of the indicial equation and r1 − r2 is not equal to an integer. Then
the complete solution is given by

y(x) = A(y(x))r=r1 + B(y(x))r=r2 , 0 < x < R where A and B are arbitrary constants.
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Case-II: Roots of the indicial equation equal.
Let r1 and r2 be the roots of the indicial equation and r1 = r2. Then the complete solution is
given by

y(x) = A(y(x))r=r1 + B( ∂y(x)
∂r )r=r1 , 0 < x < R where A and B are arbitrary constant.

Case-III: Roots of the indicial equation unequal, differing by an integer and making a
coefficient of y infinite.
Let r1 and r2 be the roots of the indicial equation are distinct and differ by an integer and
if some of the coefficient of y(x) becomes infinite when r = r1, we modify the form of y(x)
by replacing a0 by b0(r − r1). We then obtain two independent solutions by putting r = r1

in the modified form of y(x) and ∂y(x)
∂r , 0 < x < R. The result of putting r = r2 in y(x) gives

a numerical multiple of that obtained by putting r = r1 and hence we reject the solution
obtained by putting r = r2 in y(x).

Case-IV: Roots of the indicial equation unequal, differing by an integer and making a
coefficient of y indeterminate.
Let r1 and r2 be the roots of the indicial equation are distinct and differ by an integer and if
one of the coefficient of y becomes indeterminate when r = r2. Then the complete solution is
given by putting r = r2 in y(x), 0 < x < R, which contain two arbitrary constants. The result
of putting r = r1 in y(x) gives a numerical multiple of that obtained by putting r = r2 and
hence we reject the solution obtained by putting r = r1 in y.

Note: If a series solution about a point x = x0 , 0 is to be determined, one can change the
independent variable x to t = x − x0 and then solve the resulting differential equation about
t = 0.

Illustrative Example:
Case-I: Roots of indicial equation unequal and not differ by an integer.

Example 3.9 Find the power series solution of the equation
2x2y′′(x) + xy′(x) − (x + 1)y(x) = 0

in powers of x.

Solution: The given differential equation can be written as

y
′′
(x) +

1
2x

y
′
(x) − x + 1

2x2 y(x) = 0 (3.25)

Comparing the above differential equation with (3.1) we have p1(x) = 1
2x and p0(x) = x+1

2x2 .
Since the point x = 0 is the singular point. Now lim

x→x0
(x − x0)p1(x) = lim

x→0
(x − 0) x

2x2 = 1
2 and

lim
x→x0

(x− x0)2p0(x) = lim
x→0

(x− 0)2 −(x+1)
2x2 = − 1

2 are both exist and finite so the point x = 0 is a regular

singular point i.e. both xp1(x) and x2p0(x) are analytic at x = 0 and can be expanded as power
series that are convergent for |x| < ∞.
Let us assume that the trial solution of equation (3.25) is

y(x) =

∞∑

n=0

an(x − x0)n+r =

∞∑

n=0

anxn+r, a0 , 0, 0 < x < ∞. (3.26)
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Differentiating twice in a succession (3.26) gives

y
′
(x) =

∞∑

n=0

(n + r)anxn+r−1 and y
′′
(x) =

∞∑

n=0

(n + r)(n + r − 1)anxn+r−2, 0 < x < ∞.

Putting these values y, y′ and y′′ in (3.25) we get

2x2
∞∑

n=0

(n + r)(n + r − 1)anxn+r−2 + x
∞∑

n=0

(n + r)anxn+r−1 − (x + 1)
∞∑

n=0

anxn+r = 0

⇒ 2
∞∑

n=0

(n + r)(n + r − 1)anxn+r +

∞∑

n=0

(n + r)anxn+r −
∞∑

n=0

anxn+r+1 −
∞∑

n=0

anxn+r = 0

⇒
∞∑

n=0

{
2(n + r)(n + r − 1) + (n + r) − 1

}
anxn+r −

∞∑

n=0

anxn+r+1 = 0

⇒
∞∑

n=0

{
(2n + 2r + 1)(n + r − 1)

}
anxn+r −

∞∑

n=0

anxn+r+1 = 0

Equating to zero the coefficient of smallest power of x, namely xr, the indicial equation is
a0(2r + 1)(r + 1) = 0 so that roots of the equation are r = 1 and − 1

2 as a0 , 0. Here the roots of the
indicial equation are distinct and the difference is = 1 − (− 1

2 ) = 3
2 which is not an integer. Now

equating the coefficient of xn+r, we obtain the recurrence relation as

(2n + 2r + 1)(n + r − 1)an − an−1 = 0⇒ an =
an−1

(2n + 2r + 1)(n + r − 1)
.

Putting n = 1, 2, 3, · · · , we get a1 = 1
r(2r+3) a0, a2 = 1

(2r+5)(r+1) a1 = 1
(2r+5)(2r+3)r(r+1) a0 and so on. Putting

these values in (3.26), we get

y = a0xr
[
1 +

x
(2r + 3)r

+
x2

(2r + 5)(2r + 3)r(r + 1)
+ · · ·

]
(3.27)

Putting r = 1 in (3.27), we get (y(x))r=1 = a0x
[
1 + 1

5 x + 1
70 x2 + · · · , 0 < x < ∞

]
. Next putting

r = − 1
2 in (3.26), we get (y(x))r=− 1

2
= a0x−

1
2 [1 − x + 1

2 x2 + · · · , 0 < x < ∞]. Hence the required
solution is given by

y(x) = A(y(x))r=1 + B(y(x))r=− 1
2
, 0 < x < ∞.

where A and B are two arbitrary constants.
Case-II: Roots of indicial equation are equal.

Example 3.10 Use Method of Frobenius to solve the following differential equation:
xy′′ + y′ + xy = 0

Solution: The given differential equation can be written as

y
′′

+
y′

x
+ y = 0 (3.28)

Comparing the above differential equation with (3.1) we have p1(x) = 1
x , p0(x) = 1. Obviously,

x = 0 is a singular point. Note that xp1(x) = 1 and x2p0(x) = x2. Both xp1(x) and x2p0(x) are
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analytic at x = 0 and can be expanded as power series that are convergent for |x| < ∞. Hence,
x = 0 is a regular singular point. Let us assume that the trial solution of equation (3.28) is

y(x) =

∞∑

n=0

an(x − x0)n+r =

∞∑

n=0

anxn+r, a0 , 0, 0 < x < ∞ (3.29)

Differentiating twice in a succession (3.29) gives

y
′
=

∞∑

n=0

(n + r)anxn+r−1 and y
′′

=

∞∑

n=0

(n + r)(n + r − 1)anxn+r−2, 0 < x < ∞.

Putting these values y, y′ and y′′ in (3.28) we get

x
∞∑

n=0

(n + r)(n + r − 1)anxn+r−2 +

∞∑

n=0

(n + r)anxn+r−1 + x
∞∑

n=0

anxn+r = 0

⇒
∞∑

n=0

(n + r)(n + r − 1)anxn+r−1 +

∞∑

n=0

(n + r)anxn+r−1 +

∞∑

n=0

anxn+r+1 = 0

Equating to zero the coefficient of smallest power of x, namely xr−1, the indicial equation is
a0r(r−1)+ ra0 = 0 so that root of the equation is r = 0 and as a0 , 0. Here the roots of the indicial
equation are equal. Next equating to zero the coefficient of xn+r+1, we obtain the recurrence
relation as

(n + r + 2)(n + r + 1)an+2 + (n + r + 2)an+2 + an = 0⇒ an+2 = − an

(n + r + 2)2 , n = 0, 1, 2, · · · (3.30)

Next equating to zero, the coefficient of xr, we get

a1(r + 1)2 = 0 so that a1 = 0 (Since r = 0 is a root of indicial equation).

Using a1 = 0 and (3.30), we get a1 = a3 = a5 = a7 = · · · = 0. Putting n = 0, 2, 4, · · · in (3.30), we
get

a2 = − a0

(r + 2)2 , a4 = − a2

(r + 4)2 =
a0

(r + 2)2(r + 4)2

a6 = − a4

(r + 6)2 = − a0

(r + 2)2(r + 4)2(r + 6)2 and so on

Putting these values in (3.29), we get

y(x) = a0xr
[
1 − x2

(r + 2)2 +
x4

(r + 2)2(r + 4)2 −
x6

(r + 2)2(r + 4)2(r + 6)2 + · · ·
]

(3.31)

Differentiating partially equation (3.31) with respect to r, we have

∂y
∂r

= a0xrlogx
{
1 − x2

(r + 2)2 +
x4

(r + 2)2(r + 4)2 −
x6

(r + 2)2(r + 4)2(r + 6)2 + · · ·
}

+a0xr
[
− x2

(r + 2)2 ×
(−2)
r + 2

+
x4

(r + 2)2(r + 4)2

{ −2
r + 2

− 2
r + 4

}

− x6

(r + 2)2(r + 4)2(r + 6)2

{ −2
r + 2

− 2
r + 4

− 2
r + 6

}
+ · · ·

]
(3.32)



68 CONTENTS

Putting r = 0 and replacing a0 by A in (3.31), we get

(
y
)

r=0
= A[1 − x2

22 +
x4

22.42 −
x6

22.42.62 + · · · ] = Au(x)(say)

Next putting r = 0 in (3.32) and replacing a0 by B, we get

(∂y
∂r

)
r=0

= Blogx
[
1 − x2

22 +
x4

22.42 −
x6

22.42.62 + · · ·
]

+ B
[x2

22 −
x4

2242 (1 +
1
2

) +
x6

224262

(
1 +

1
2

+
1
3

)
+ · · ·

]

= B[u log x + {x
2

22 −
x4

2242 (1 +
1
2

) +
x6

224262 (1 +
1
2

+
1
3

) + · · · }] = Bv(x)(say)

Hence the required solution is given by y = Au(x) + Bv(x), 0 < x < ∞ where A and B are
arbitrary constants.
Case-III: Roots of indicial equation unequal differ by an integer and making a coefficient of
y infinite.

Example 3.11 Find the power series solution of the equation
x2y′′ + xy′ + (x2 − 1)y = 0

in powers of x.

Solution: The given differential equation can be written as

y
′′

+
y′

x
+

(x2 − 1)y
x2 = 0 (3.33)

Comparing the above differential equation with (3.1) we have p1(x) = 1
x , p0(x) = x2−1

x2 . Obviously,
x = 0 is a singular point. Note that lim

x→0
xp1(x) = 1 and lim

x→0
x2p0(x) = −1. Both xp1(x) and x2p0(x)

are analytic at x = 0 and can be expanded as power series that are convergent for |x| < ∞.
Hence, x = 0 is a regular singular point. Let us assume that the trial solution of of equation
(3.33) is

y(x) =

∞∑

n=0

an(x − x0)n+r =

∞∑

n=0

anxn+r, a0 , 0, 0 < x < ∞ (3.34)

Differentiating twice in a succession (3.34) gives

y
′
=

∞∑

n=0

(n + r)anxn+r−1 and y
′′

=

∞∑

n=0

(n + r)(n + r − 1)anxn+r−2, 0 < x < ∞
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Putting these values y, y′ and y′′ in (3.33) we get

x2
∞∑

n=0

(n + r)(n + r − 1)anxn+r−2 + x
∞∑

n=0

(n + r)anxn+r−1 + (x2 − 1)
∞∑

n=0

anxn+r = 0

⇒
∞∑

n=0

(n + r)(n + r − 1)anxn+r +

∞∑

n=0

(n + r)anxn+r +

∞∑

n=0

anxn+r+2 −
∞∑

n=0

anxn+r = 0

⇒
∞∑

n=0

[
(n + r)(n + r − 1) + (n + r) − 1

]
anxn+r +

∞∑

n=0

anxn+r+2 = 0

⇒
∞∑

n=0

[
(n + r − 1)(n + r + 1)

]
anxn+r +

∞∑

n=0

anxn+r+2 = 0 (3.35)

Equating to zero the coefficient of smallest power of x, namely xr in (3.35), we obtain the indicial
equation is a0(r + 1)(r − 1) = 0 so that roots of the equation are r = −1 and 1 as a0 , 0. Here
the roots of the indicial equation are unequal and differ by an integer. Next equating zero the
coefficient of xn+r in (3.35), we obtain the recurrence relation as

(n + r + 1)(n + r − 1)an + an−2 = 0⇒ an = − an−2

(n + r + 1)(n + r − 1)
(3.36)

Next equating the coefficient xr+1 in (3.35) and we get

a1r(r + 2) = 0⇒ a1 = 0 (Since both the roots of indicial equation are r = 1 and r = −1).

Using a1 = 0 and (3.36), we get a1 = a3 = a5 = a7 = · · · = 0. Putting n = 2, 4, 6, · · · , in (3.36) we
get

a2 = − a0

(r + 1)(r + 3)
, a4 = − a2

(r + 3)(r + 5)
=

a0

(r + 1)(r + 3)2(r + 5)
and so on

Putting these values in (3.34), we get

y = a0xr
[
1 − x2

(r + 1)(r + 3)
+

x4

(r + 1)(r + 3)2(r + 5)2 − · · ·
]

(3.37)

Now if we take r = −1 in the above series, the coefficients become infinite because of the factor
(r + 1) in the denominator. To get out of this difficulty we put a0 = b0(r + 1) in (3.37) and get
modified solution as

y = b0xr
[
(r + 1) − x2

(r + 3)
+

x4

(r + 3)2(r + 5)
− · · ·

]
(3.38)

Differentiating partially equation (3.38) with respect to r, we have

∂y
∂r

= b0xrlogx
{
(r + 1) − x2

(r + 3)
+

x4

(r + 3)2(r + 5)
− · · ·

}

+b0xr
[
1 +

x2

(r + 3)2 −
x4

(r + 3)2(r + 5)
{ 2
(r + 3)3(r + 5)

+
1

(r + 3)(r + 5)2 } − · · · ] (3.39)

Putting r = −1 and replacing b0 by A in (3.39), we get
(
y
)

r=−1
= Ax−1

[
− x2

2
+

x4

22.4
− · · ·

]
= Au(say) (3.40)
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Next putting r = −1 in (3.40) and replacing b0 by B, we get
(∂y
∂r

)
r=−1

= Bx−1logx
[
− x2

2
+

x4

22.4
+ · · ·

]
+ Bx−1

[
1 +

x2

22 −
x4

22.4

( 1
16

+
1
32

)
+ · · ·

]

⇒
(∂y
∂r

)
r=−1

= B
[
ulogx + Bx−1

{
1 +

x2

22 −
x4

22.4

( 1
16

+
1
32

)
+ · · ·

}]
= Bv(say)

Hence the required solution is given by y = Au(x) + Bv(x), 0 < x < ∞, where A and B are
arbitrary constants.

Note: When x = x0 is an ordinary point of the differential equation
P0(x)y′′ + P1(x)y′ + P2(x)y = 0

then we can also solve this type of differential equation by Frobenius Method.

Case-IV: Roots of indicial equation unequal differ by an integer and making a coefficient
of y indeteminate

Example 3.12 Find the power series solution of the equation
(1 − x2)y′′ − xy′ + 4y = 0

in powers of x.

Solution: The given differential equation can be written as

y
′′ − x

1 − x2 y
′
+

4
1 − x2 y = 0 (3.41)

Comparing the above differential equation with (3.1) we have p0(x) = 4
1−x2 , p1(x) = − x

1−x2 and
p0(0) = 4, p1(0) = 0 so the point x = 0 is the ordinary point. Let us assume that the trial solution
of equation (3.41) be

y(x) =

∞∑

n=0

an(x − x0)n+r =

∞∑

n=0

anxn+r, a0 , 0, |x| < 1 (3.42)

Differentiating twice in a succession (3.42) gives

y
′
=

∞∑

n=0

(n + r)anxn+r−1 and y
′′

=

∞∑

n=0

(n + r)(n + r − 1)anxn+r−2

Putting these values y, y′ and y′′ in (3.41) we get

(1 − x2)
∞∑

n=0

(n + r)(n + r − 1)anxn+r−2 − x
∞∑

n=0

(n + r)anxn+r−1 + 4
∞∑

n=0

anxn+r = 0

⇒
∞∑

n=0

(n + r)(n + r − 1)anxn+r−2

−
∞∑

n=0

(n + r)(n + r − 1)anxn+r −
∞∑

n=0

(n + r)anxn+r + 4
∞∑

n=0

anxn+r = 0

⇒
∞∑

n=0

(n + r)(n + r − 1)anxn+r−2 −
∞∑

n=0

[
(n + r)(n + r − 1) + (n + r) − 4

]
anxn+r = 0

⇒
∞∑

n=0

(n + r)(n + r − 1)anxn+r−2 −
∞∑

n=0

[
(n + r + 2)(n + r − 2)

]
anxn+r = 0
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Equating to zero the coefficient of smallest power of x, namely xr−2,we obtain the indicial
equation is a0r(r − 1) = 0 so that roots of the equation are r = 0 and 1 as a0 , 0. Here the roots
of the indicial equation are unequal and differ by an integer. Next equating zero the coefficient
of xn+r−2, we obtain the recurrence relation as

(n + r)(n + r − 1)an − (r + n)(r + n − 4)an−2 = 0⇒ an =
(r + n − 4)
(n + r − 1)

an−2 (3.43)

Next equating the coefficient xr−1 and get a1r(r+1) = 0. If we take r = 0, then a1 is indeterminate
with r = 0 and using (3.43), we can express a2, a4, a6, · · · in terms of a0 and a3, a5, a7, · · · in terms
of a1 if we assume a1 is finite. Thus at r = 0 (3.43) reduces to

an =
(n − 4)
(n − 1)

an−2 (3.44)

Putting n = 2, 3, 4, 5, 6, · · · in (3.44), we get

a2 = −2a0, a3 = −1
2

a1 = −a1

2
, a4 = a6 = a8 = · · · = 0,

a5 =
a3

4
= −a1

8
, a7 =

3
6

a5 = − a1

16
and so on

Putting r = 0 and a2, a3, a4, · · · in (3.42), we get

y(x) =
[
a0 + a1x − 2a0x2 − a1

2
x3 − a1

8
x5 − a1

16
x7 + · · · , |x| < 1

]
(3.45)

⇒ y(x) = a0

(
1 − 2x2

)
+ a1

(
x − x3

2
− x5

8
− x7

16
− · · · , |x| < 1

)
(3.46)

which is the required solution, where a0 and a1 are two arbitrary constants.

3.11 Worked out Examples

Example 3.13 Find the series solution of ODE
y′′ + xy′ + x2y = 0

about the point x = 0.

Solution:The given differential equation is

d2y
dx2 + x

dy
dx

+ x2y = 0 (3.47)

Since x = 0 is an ordinary point so let

y(x) =

∞∑

n=0

an(x − x0)n =

∞∑

n=0

anxn, 0 < x < ∞ (3.48)

be the trial solution of (3.47). Differentiating twice in a succession (3.48) gives

y
′
(x) =

∞∑

n=1

nanxn−1 and y
′′
(x) =

∞∑

n=2

n(n − 1)anxn−2, 0 < x < ∞
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Putting these values y, y′ and y′′ in (3.47) we get

∞∑

n=2

n(n − 1)anxn−2 + x
∞∑

n=1

nanxn−1 + x2
∞∑

n=0

anxn = 0

⇒
∞∑

n=2

n(n − 1)anxn−2 +

∞∑

n=1

nanxn +

∞∑

n=0

anxn+2 = 0

We shift the index of summation in the first series by 2, replacing n with n + 2 and using the
initial value n = 0. We shift the index of summation in the third series by 2, replacing n with n−2
and using the initial value n = 2. Since we want to express everything in only one summation
sign, we have to start the summation at n = 2 in every series,

∞∑

n=0

(n + 1)(n + 2)an+2xn +

∞∑

n=1

nanxn +

∞∑

n=2

an−2xn = 0

⇒ 2a2 + (6a3 + a1)x +

∞∑

n=2

{(n + 1)(n + 2)an+2 + nan + an−2}xn = 0

Equating the coefficients of various power of x to zero, we get

2a2 = 0⇒ a2 = 0, 6a3 + a1 = 0⇒ a3 = −a1

6

and (n + 1)(n + 2)an+2 + nan + an−2 = 0⇒ an+2 = − nan + an−2

(n + 1)(n + 2)
∀n ≥ 2

This last condition is called recurrence formula. Now putting n = 2, 3, 4, · · · successively in the
above recurrence formula we get

a4 = −2a2 + a0

12
= − a0

12
, a5 = −3a3 + a1

20
= − 3

20
a3 − 1

20
a1 =

1
40

a1 − 1
20

a1 =
a1

40
and so on

Substituting the values of a2, a3, a4, · · · in (3.48) the required solution is

y = a0 + a1x + a2x2 + a3x3 + a4x4 + · · ·
⇒ y = a0 + a1x − a1

6
x3 − a0

12
x4 +

a1

40
x5 + · · ·

⇒ y = a0(1 − 1
12

x4 + · · · ) + a1(x − 1
6

x3 +
1

40
x5 − · · · ), 0 < x < ∞

Example 3.14 Find the series solution of the equation
d2 y
dx2 + y = 0

near x = 0 such that y(0) = 1, y′ (0) = 2.

Solution: The given differential equation is

d2y
dx2 + y = 0 (3.49)

Comparing the above differential equation with (3.1) we have p1(x) = 0 and p0(x) = 1. Obviously,
x = 0 is a ordinary point. Note that both p1(x) and p0(x) are analytic at x = 0 and can be expanded
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as power series that are convergent for |x| < ∞. So let

y(x) =

∞∑

n=0

an(x − x0)n =

∞∑

n=0

anxn, 0 < x < ∞ (3.50)

be the series solution of (3.49). Differentiating twice in a succession (3.50) gives

y
′
=

∞∑

n=1

nanxn−1 and y
′′

=

∞∑

n=2

n(n − 1)anxn−2 (3.51)

Putting these values y, y′ and y′′ in (3.49) we get

∞∑

n=2

n(n − 1)anxn−2 +

∞∑

n=0

anxn = 0

We shift the index of summation in the first series by 2, replacing n with n + 2 and using the
initial value n = 0.

∞∑

n=0

(n + 1)(n + 2)an+2xn +

∞∑

n=0

anxn = 0

⇒
∞∑

n=0

[
(n + 1)(n + 2)an+2 + an

]
xn = 0

Equating the coefficients of xn to zero, we get

(n + 1)(n + 2)an+2 + an = 0⇒ an+2 = − 1
(n + 1)(n + 2)

an for all n ≥ 0.

Now putting n = 0, 1, 2, 3, 4, · · · successively in the above recurrence relation we get

a2 = − 1
1.2

a0 = − 1
2!

a0, a3 = − 1
3.2

a1 = − 1
3!

a1, a4 = − 1
4.3

a2 =
1

4.3.2!
a0 =

1
4!

a0

a5 = − 1
5.4

a3 = − 1
5.4.3!

a1 =
1
5!

a1, a6 = − 1
6.5

a4 = − 1
6.5.4!

a0 =
1
6!

a0 and so on

Substituting the values of a2, a3, a4, · · · in (3.50) we get

y = a0{1 − x2

2!
+

x4

4!
− x6

6!
+ · · · } + a1(x − x3

3!
+

x5

5!
− · · · )⇒ y = a0 sin x + a1 cos x

Using the conditions y(0) = 1 and y′(0) = 2 in (3.52) and (3.51), we get a0 = 1 and a1 = 2. Hence
the required solution is

y = cos x + 2 sin x, 0 < x < ∞
Example 3.15 Obtain the power series solution of the differential equation

2x2y′′ + (2x2 − x)y′ + y = 0
near the point x = 0.

Solution: The given differential equation can be written as

y
′′
(x) +

(2x2 − x)
2x2 y

′
(x) +

y(x)
2x2 = 0 (3.52)
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Comparing the above differential equation with (3.1) we have p1(x) = 2x2−x
2x2 and p0(x) = 1

2x2 .
Obviously, x = 0 is a singular point. Note that xp1(x) = 2x−1

2 and x2p0(x) = 1
2 . Both xp1(x) and

x2p0(x) are analytic at x = 0 and can be expanded as power series that are convergent for |x| < ∞.
Hence, x = 0 is a regular singular point. Let us assume that the trial solution of of equation
(3.52) is

y(x) =

∞∑

n=0

an(x − x0)n+r =

∞∑

n=0

anxn+r, a0 , 0, 0 < x < ∞ (3.53)

Differentiating twice in a succession (3.53) gives

y
′
=

∞∑

n=0

(n + r)anxn+r−1 and y
′′

=

∞∑

n=0

(n + r)(n + r − 1)anxn+r−2

Putting these values y, y′ and y′′ in (3.52) we get

2x2
∞∑

n=0

(n + r)(n + r − 1)anxn+r−2 + (2x2 − x)
∞∑

n=0

(n + r)anxn+r−1 +

∞∑

n=0

anxn+r = 0

⇒ 2
∞∑

n=0

(n + r)(n + r − 1)anxn+r + 2
∞∑

n=0

(n + r)anxn+r+1 −
∞∑

n=0

(n + r)anxn+r +

∞∑

n=0

anxn+r = 0

⇒
∞∑

n=0

[
2(n + r)(n + r − 1) − (n + r) + 1

]
anxn+r + 2

∞∑

n=0

(n + r)anxn+r+1 = 0

Equating to zero the coefficient of smallest power of x, namely xr, we obtain the indicial equation
as

a0[2r(r − 1) − r + 1] = 0⇒ r =
1
2
, 1 as a0 , 0

Here the roots of the indicial equation are unequal and not differ by an integer. Next equating
zero the coefficient of xn+r, we obtain the recurrence relation as

(2n + 2r − 1)(n + r − 1)an + 2(n + r − 1)an−1 = 0

⇒ an = − 2an−1

(2n + 2r − 1)
(3.54)

Putting n = 1, 2, 4, 6, · · · , in above recurrence relation we get

a1 = − 2a0

2r + 1
, a2 = − 2a1

2r + 3
=

22a0

(2r + 1)(2r + 3)
, a3 = − 2a2

2r + 5
= − 23a0

(2r + 1)(2r + 3)(2r + 5)

and so on. Putting these values in (3.53), we get

y = a0xr
[
1 − 2x

2r + 1
+

22x2

(2r + 1)(2r + 3)
− 23x3

(2r + 1)(2r + 3)(2r + 5)
+ · · ·

]
(3.55)

Putting r = 1
2 and replacing a0 by A in (3.55), we get

(
y
)

r= 1
2

= Ax
1
2

[
1 − x +

x2

2
− x3

6
+ · · ·

]
= Au(say)
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Next putting r = 1 in (3.55) and replacing a0 by B, we get

(
y
)

r=1
= Bx

[
1 − 2

3
x +

4x2

15
− 8x3

105
+ · · ·

]
= Bv(say)

Hence the required solution is given by y(x) = Au(x) + Bv(x), 0 < x < ∞, where A and B are
arbitrary constants.

Example 3.16 Use method of Frobenious to find solution of the differential equation
(x2 − x)y′′ + (3x − 1)y′ + y = 0

Solution: The given differential equation can be written as

y
′′
(x) +

3x − 1
x2 − x

y
′
(x) +

y(x)
x2 − x

= 0 (3.56)

Comparing the above differential equation with (3.1) we have p1(x) = 3x−1
x2−x and p0(x) = 1

x2−x .
Obviously, x = 0 is a singular point. Note that xp1(x) = 3x−1

x−1 and x2p0(x) = x
x−1 . Both xp1(x) and

x2p0(x) are analytic at x = 0 and can be expanded as power series that are convergent for |x| < 1.
Hence, x = 0 is a regular singular point. Let us assume that the trial solution of of equation
(3.52) is

y(x) =

∞∑

n=0

an(x − x0)n+r =

∞∑

n=0

anxn+r, a0 , 0, 0 < x < 1 (3.57)

Differentiating twice in a succession (3.57) gives

y
′
=

∞∑

n=0

(n + r)anxn+r−1 and y
′′

=

∞∑

n=0

(n + r)(n + r − 1)anxn+r−2

Putting these values y, y′ and y′′ in (3.56) we get

(x2 − x)
∞∑

n=0

(n + r)(n + r − 1)anxn+r−2 + (3x − 1)
∞∑

n=0

(n + r)anxn+r−1 +

∞∑

n=0

anxn+r = 0

⇒
∞∑

n=0

(n + r)(n + r − 1)anxn+r −
∞∑

n=0

(n + r)(n + r − 1)anxn+r−1 + 3
∞∑

n=0

(n + r)anxn+r

−
∞∑

n=0

(n + r)anxn+r−1 +

∞∑

n=0

anxn+r = 0

⇒
∞∑

n=0

[
(n + r)(n + r − 1) + 3(n + r) + 1

]
anxn+r +

∞∑

n=0

[
(n + r) − (n + r)(n + r − 1)

]
anxn+r−1 = 0

Equating to zero the coefficient of smallest power of x, namely xr−1,we obtain the indicial
equation as a0r2 = 0 so that r = 0 as a0 , 0. Here the roots of the indicial equation are equal.
Next equating zero the coefficient of xn+r−1, we obtain the recurrence relation as

(n + r + 1)2an−1 − (n + r)2an = 0, ⇒ an =
(n + r + 1)2

(n + r)2 an−1
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Putting n = 1, 2, 3, 4, · · · , in above recurrence relation, we get

a1 = − (r + 2)2

(r + 1)2 a0, a2 = − (r + 3)2

(r + 2)2 a1 =
(r + 3)2

(r + 1)2 a0, a3 = − (r + 4)2

(r + 3)2 a2 = − (r + 4)2

(r + 1)2 a0

and so on. Putting these values in (3.57), we get

y = a0xr[1 − (r + 2)2

(r + 1)2 x +
(r + 3)2

(r + 1)2 x2 − (r + 4)2

(r + 1)2 x3 + · · · ] (3.58)

Differentiating partially equation (3.58) with respect to r, we get

∂y
∂r

= a0xrlogx
[
1 − (r + 2)2

(r + 1)2 x +
(r + 3)2

(r + 1)2 x2 − (r + 4)2

(r + 1)2 x3 + · · ·
]

+a0xr
[
− (r + 2)2

(r + 1)2 x × −2(r + 2)
(r + 1)3 +

(r + 3)2x2

(r + 1)2 ×
−2(r + 3)
(r + 1)2 −

(r + 4)2x3

(r + 1)2 ×
−2(r + 2)
(r + 1)3 + · · ·

]

Putting r = 0 and replacing a0 by A in (3.58), we get

(y)r=0 = A
[
1 − 22x2 + 32x4 − 42x6 + · · ·

]
= Au (say)

Next putting r = 0 in (3.59) and replacing a0 by B, we get

(
∂y
∂r

)r=0 = B log x{1 − 22x2 + 32x4 − 42x6 + · · · }

+ B
[
1 − 22x × (−4) + 32x2 × (−6) − 42x3 × (−8) + · · ·

]

= B
[
u log x +

{
1 + 16x − 54x2 + 128x3 + · · ·

}]
= Bv (say)

Hence the required solution is given by y(x) = Au(x) + Bv(x), 0 < x < 1, where A and B are
arbitrary constants.

Example 3.17 Find the power series solution of the differential equation
y′′ (x) + xy′(x) + (x2 + 2)y(x) = 0

about the point x = 0.

Solution:The given differential equation is

d2y
dx2 + x

dy
dx

+ (x2 + 2)y = 0 (3.59)

Comparing the above differential equation with (3.1) we have p1(x) = x and p0(x) = x2 + 2.
Obviously, x = 0 is a ordinary point. Note that both p1(x) and p0(x) are analytic at x = 0 and can
be expanded as power series that are convergent for |x| < ∞. So let

y(x) =

∞∑

n=0

an(x − x0)n =

∞∑

n=0

anxn, 0 < x < ∞ (3.60)

be the trial solution of (3.59). Differentiating twice in a succession (3.60) gives

y
′
=

∞∑

n=1

nanxn−1 and y
′′

=

∞∑

n=2

n(n − 1)anxn−2
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Putting these values y, y′ and y′′ in (3.59) we get
∞∑

n=2

n(n − 1)anxn−2 + x
∞∑

n=1

nanxn−1 + (x2 + 2)
∞∑

n=0

anxn = 0

⇒
∞∑

n=2

n(n − 1)anxn−2 +

∞∑

n=1

nanxn +

∞∑

n=0

anxn+2 + 2
∞∑

n=0

anxn = 0

We shift the index of summation in the first series by 2, replacing n with n + 2 and using the
initial value n = 0. We shift the index of summation in the third series by 2, replacing n with n−2
and using the initial value n = 2. Since we want to express everything in only one summation
sign, we have to start the summation at n = 2 in every series,

∞∑

n=0

(n + 1)(n + 2)an+2xn +

∞∑

n=1

nanxn +

∞∑

n=2

an−2xn + 2
∞∑

n=1

anxn = 0

⇒ 2a2 + 2a0 + (6a3 + 3a1)x +

∞∑

n=1

{(n + 1)(n + 2)an+2 + (n + 2)an + an−2}xn = 0

Equating the coefficients of various power of x to zero, we get

2a2 = −2a0 ⇒ a2 = −a0, 6a3 + 3a1 = 0⇒ a3 = −a1

2

and (n + 1)(n + 2)an+2 + (n + 2)an + an−2 = 0⇒ an+2 = − (n + 2)an + an−2

(n + 1)(n + 2)
∀n ≥ 2

This last condition is called recurrence formula. Now putting n = 2, 3, 4, · · · successively in the
above recurrence formula we get

a4 = −4a2 + a0

12
= −−4a0 + a0

12
= −a0

4
, a5 = −5a3 + a1

20
= −1

4
a3 − 1

20
a1 =

1
8

a1 − 1
20

a1 =
3a1

40
and so on. Substituting the values of a2, a3, a4, · · · in (3.60) the required solution is

y(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + · · ·
⇒ y = a0 + a1x − a0x2 − a1

2
x3 − a0

4
x4 +

3a1

40
x5 + · · ·

⇒ y = a0(1 − x2 − 1
4

x4 + · · · ) + a1(x − 1
2

x3 +
3

40
x5 − · · · ), 0 < x < ∞

Example 3.18 Determine the singular point of the following equation:
x(1 − x) d2 y

dx2 + (3x − 1) dy
dx + y = 0

Solution: Here the coefficient of d2 y
dx2 is x(1 − x). Hence singular point is found by solving

x(1 − x) = 0 i.e. x = 0, 1. Hence 0 and 1 are the singular points.

Example 3.19 Find the ordinary point and singular points of
x2(x + 1)2 d2 y

dx2 + (x2 − 1) dy
dx + 2xy = 0

Solution: Here the coefficient of d2 y
dx2 is x2(1 + x)2. Hence singular point is found by solving

x2(1 + x)2 = 0 i.e. x = 0, −1. Hence 0 and −1 are the singular points. For all values of x for which
x2(1 + x)2 , 0 are called ordinary points.
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Example 3.20 Show that x = 0 ia regular point but x = 2 is not regular singular point of the
equation

x(x − 2)3y
′′

+ 3(x − 2)3y
′
+ 4y = 0

Solution: Here the coefficient of d2 y
dx2 is x(x − 2)3. Hence singular point is found by solving

x(x − 2)3 = 0 i.e. x = 0, 2. Hence 0 and 2 are the singular points. Also, the given differential
equation is compare with the differential equation (3.1) then p1(x) =

3(x−2)3

x(x−2)3 and p0(x) = 4
x(x−2)3 .

Now since lim
x→x0

(x − x0)p1(x) = lim
x→0

(x − 0) 3(x−2)3

x(x−2)3 = 3 and lim
x→x0

(x − x0)2p0(x) = lim
x→0

x2 4
x(x−2)3 = 0 are

both exist and finite so the point x = 0 is a regular singular point.
Again lim

x→x0
(x−x0)p1(x) = lim

x→2
(x−2) 3(x−2)3

x(x−2)3 = 0 and lim
x→x0

(x−x0)2p0(x) = lim
x→2

(x−2)2 4
x(x−2)3 = lim

x→2
4

x(x−2)

which does not exist. Hence x = 2 is not a regular singular point.

Example 3.21 Show that x = 0 is regular singular points but x = −1 is not regular singular
point of

x(x + 1)3 d2 y
dx2 + (x2 − 1) dy

dx + 2y = 0

Solution: Here the coefficient of d2 y
dx2 is x(x + 1)3. Hence singular point is found by solving

x(x + 1)3 = 0 i.e. x = 0, −1. Hence 0 and −1 are the singular points. Also, the given differential
equation is compare with the differential equation (3.1) then p1(x) = x2−1

x(x+1)3 and p0(x) = 2
x(x+1)3 .

Now since lim
x→x0

(x − x0)p1(x) = lim
x→0

(x − 0) x2−1
x(x+1)3 = −1 and lim

x→x0
(x − x0)2p0(x) = lim

x→0
2x

(x+1)3 = 0 are

both exist and finite so the point x = 0 is a regular singular point.
Again lim

x→x0
(x − x0)p1(x) = lim

x→−1
(x + 1) x2−1

x(x+1)3 = lim
x→−1

x−1
x(x+1) does not exist. Hence x = −1 is not a

regular singular point.

Example 3.22 Show that x = 0 is the ordinary point
(1 + x2) d2 y

dx2 + x dy
dx − 3y = 0.

Solution: The differential equation can be written as

d2 y
dx2 + x

1+x2
dy
dx − 3

1+x2 y = 0.

Comparing the above differential equation with (3.1) we have p1(x) = x
1+x2 and p0(x) = − 3

1+x2 .
Now since lim

x→x0
(x − x0)p1(x) = lim

x→0
x2

(x2+1) = 0 and lim
x→x0

(x − x0)2p0(x) = lim
x→0
− 3x2

(x2+1) = 0. So x = 0 is

an ordinary point of the given equation.

Example 3.23 Determine the singular points of the following differential equation and specify
whether they are regular or irregular

(x − 1)4 d2 y
dx2 + 2(x − 1) dy

dx + y = 0

Solution: Here the coefficient of d2 y
dx2 is (x − 1)4. Hence singular point is found by solving

(x − 1)4 = 0 i.e. x = 1. Hence 1 is the singular point. Let the given differential equation is
compare with the differential equation (3.1) then p1(x) =

2(x−1)
(x−1)4 and p0(x) = 1

(x−1)4 . Now since

lim
x→x0

(x − x0)p1(x) = lim
x→1

(x − 1) 2(x−1)
(x−1)4 = lim

x→1
2

(x−1)2 = ∞ is not finite so the point x = 1 is a irregular

singular point.
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Example 3.24 Assuming the solution of

(1 − x)y′ + y = 0

has a series expansion about x = 0 work out the recursion relation. Write out the first few
terms and show that the series terminates to give y = A(1 − x) for arbitrary A.

Solution: The first order ODE can be written as

y′ +
y

1 − x
= 0

hence x = 0 is the ordinary point. So we begin by writing

y(x) =

∞∑

n=0

anxn, |x| < 1

and so by differentiation we get

y′(x) =

∞∑

n=0

annxn−1, |x| < 1 (3.61)

and hence

xy′(x) =

∞∑

n=0

annxn, |x| < 1.

Thus, substituting the differential equation we get

∞∑

n=0

annxn−1 −
∞∑

n=0

annxn +

∞∑

n=0

anxn = 0, |x| < 1

In order to make progress we need to rewrite the first of these three series so that it is in the
form ∞∑

n=0

stuffnxn

so that all three bits in the equation match. Well, let m = n − 1 in the expression for y′, (3.61), to
get

y′(x) =

∞∑

m=0

am+1(m + 1)xm. (3.62)

In fact, this looks at first like it gives

y′(x) =

∞∑

m=−1

am+1(m + 1)xm (3.63)

but the m = −1 term is zero, so that’s fine. Now m is just an index so we can rename it n, don’t
get confused, this isn’t the original n, we just want all parts of the equation to look the same.

In fact, we now have
∞∑

n=0

an+1(n + 1)xn −
∞∑

n=0

annxn +

∞∑

n=0

anxn = 0, |x| < 1
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and we can group this all together to give

∞∑

n=0

[an+1(n + 1) + (1 − n)an]xn = 0.

The recursion relation is
an+1 = −

(1 − n
1 + n

)
an

and this applies to n from zero upwards since that is what appears in the sum sign.

Starting at n = 0 we have
a1 = −a0.

For n = 1 we get
a2 = 0

and the series terminates here because every term is something multiplied by the one before
and so if a2 is zero the rest of the series is zero. Thus y = a0(1 − x) for arbitrary a0.

Example 3.25 Assuming the solution of

y′′ − 3x2y = 0

has a series expansion about x = 0 work out the recursion relation and write out the first four
non-zero terms if y(0) = 1 and y′(0) = 1.

Solution: Since x = 0 is the ordinary point. Let the series solution of the above ODE be

y(x) =

∞∑

n=0

anxn, |x| < ∞

This gives
∞∑

n=0

n(n − 1)anxn−2 −
∞∑

n=0

3anxn+2 = 0, |x| < ∞

The problem here is with the powers of x. The easiest thing is to change everything to the
highest power, in this case n + 2. Hence, put m + 2 = n − 2 in the first sum

∞∑

n=0

n(n − 1)anxn−2 =

∞∑

m=−4

(m + 4)(m + 3)am+4xm+2

and substitute that back into the equation, writing m as n:

∞∑

n=−4

(n + 4)(n + 3)an+4xn+2 −
∞∑

n=0

3anxn+2 = 0

and so the problem now is that the ranges are different. We need to take out the first few term
of the first sum, well, the n = −4 and n = −3 terms are zero and so

∞∑

n=−4

(n + 4)(n + 3)an+4xn+2 = 2a2 + 6a3x +

∞∑

n=0

(n + 4)(n + 3)an+4xn+2.
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Now the equation reads

2a2 + 6a3x +

∞∑

n=0

(n + 4)(n + 3)an+4xn+2 −
∞∑

n=0

3anxn+2 = 0

⇒ 2a2 + 6a3x +

∞∑

n=0

[(n + 4)(n + 3)an+4 − 3an] xn+2 = 0.

Thus, a2 = 0, a3 = 0, an+4 =
3

(n + 4)(n + 3)
an

where the recursion relation applies for n = 0, 1, · · · . Now, y(0) = 1 implies a0 = 1 and y′(0) = 1
implies a1 = 1, next, with n = 0, t he recursion gives

a4 =
1
4

a0 =
1
4

and with n = 1, a5 =
3

20
a1 =

3
20
.

Now since a2 = a3 = 0 the n = 2 recursion gives a6 = 0 and the n = 3 recursion gives a7 = 0.
However, n = 4 gives

a8 =
3

32
a4 =

3
128

and so
y(x) = 1 + x +

1
4

x4 +
3
20

x5 +
3

128
x8 + · · · , |x| < ∞.

Aside. In the above we made all the powers the same as the highest power, this is usually the
easiest thing, but it is just a matter of convenience. If we had decided to make them equal the
smallest power instead, we would have substituted n + 2 = m − 2 in the second sum to get

∞∑

n=0

n(n − 1)anxn−2 −
∞∑

n=4

3an−4xn−2 = 0

and we would then remove the first four term from the first sum to get

2a2 + 6a3x +

∞∑

n=4

[
n(n − 1)anxn−2 − 3an−4

]
xn−2 = 0

and so

a2 = 0, a3 = 0, an =
3

n(n − 1)
an−4

where now the recursion relation applies to n = 4, 5, · · · because that is what is in the sum.
Another way of proceeding is to define a−4 = a−3 = a−2 = a−1 = 0 and then rewrite the equation
as ∞∑

n=0

n(n − 1)anxn−2 −
∞∑

n=0

3an−4xn−2 = 0

and carry on from there.
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Example 3.26 Assuming the solution of

y′ − 3xy = 2

has a series expansion about x = 0, work out the recursion relation and write out the first four
non-zero terms.

Solution: Since x = 0 is the ordinary point of the above first order ODE. Also, the complication
here is that unlike the other examples we have examined, this equation is an inhomogeneous
equation. However, the thing to do is to press on with the same methods and hope for the best.

y =

∞∑

n=0

anxn, |x| < ∞

gives, when substituted into the equation,

∞∑

n=0

nanxn−1 −
∞∑

n=0

3anxn+1 = 2

and so the first problem is with the powers of x, let m + 1 = n − 1 in the first sum to give

∞∑

n=0

nanxn−1 =

∞∑

m=−2

(m + 2)am+2xm+1

and, noting the the m = −2 term is zero, we take out the first two terms to get

a1 +

∞∑

n=0

[(n + 2)an+2 − 3an]xn+1 = 2.

Now, notice that the summand starts with an x term and so we get

a1 = 2, an+2 =
3

n + 2
an.

Thus, a2 =
3
2

a0, a3 = a1 = 2 and so on.

Hence, y = a0

(
1 +

3
2

x2 +
32

2 × 4
x4 +

33

2 × 4 × 6
x6 + · · ·

)
+ 2(x + x3 +

3
5

x5 +
32

5 × 7
x7 + · · · ), |x| < ∞

and we see that the solution to this inhomogeneous solution has the usual structure: a particular
part and a solution to the homogeneous equation depending on an arbitrary constant.

Example 3.27 Use the method of Froebenius to find series solutions for

xy′′ + 2y′ + xy = 0 (3.64)

about x = 0.

Solution: The given differential equation can be written as

y
′′
(x) +

2
x

y
′
(x) + y(x) = 0
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Comparing the above differential equation with (3.1) we have p1(x) = 2
x and p0(x) = 1. Obviously,

x = 0 is a singular point. Note that xp1(x) = 2 and x2p0(x) = x2. Both xp1(x) and x2p0(x) are
analytic at x = 0 and can be expanded as power series that are convergent for |x| < ∞. Hence,
x = 0 is a regular singular point. Let us assume that the trial solution of of equation (3.64) be

y(x) =

∞∑

n=0

anxn+r, a0 , 0, 0 < x < ∞

Now, substituting into the equation gives

∞∑

n=0

[(n + r)(n + r − 1) + 2(n + r)]anxn+r−1 +

∞∑

n=0

anxn+r+1 = 0.

so, moving the first power up to the second one, this gives

∞∑

n=−2

[(n + 2 + r)(n + r + 1) + 2(n + r + 2)]an+2xn+r+1 +

∞∑

n=0

anxn+r+1 = 0

or, taking the first two terms out

r(r + 1)a0xr−1 + (r + 1)(r + 2)a1xr +

∞∑

n=0

[(n + 2 + r)(n + r + 3)]an+2xn+r+1 +

∞∑

n=0

anxn+r+1 = 0.

So, if r = 0 or r = −1 then there is no constraint on a0. Notice that r = −1 allows two solutions
because, if r = −1 there is no equation for either a0 or a1. For r = −1 the recursion is

an+2 = − an

(n + 1)(n + 2)

so the first few non-zero terms are

y =
1
x

[
a0

(
1 − 1

2
x2 +

1
24

x4 − · · ·
)

+ a1

(
x − 1

6
x3 · · ·

)]
, 0 < x < ∞

For r = 0 the recursion is
an+2 = − an

(n + 2)(n + 3)
and a1 = 0, this means that the r = 0 solution is

y = a0

(
1 − 1

6
x2 +

1
120

x4 − · · ·
)
, 0 < x < ∞

Notice that the r = 0 solution is actually just the a1 solution for r = −1. This is just as well
because there would be too many solutions otherwise. Notice the subtle way the method of
Froebenius problems often work out. There is quite a lot to this subject we have only touched
on. As an aside, notice the the solutions to the differential are cos x/x and sin x/x. Writing these
out as series will give the same thing as above.

Example 3.28 Assuming the solution of

(1 − x2)y′ − 2xy = 0

has a series expansion about x = 0, work out the recursion relation and write out the first four
non-zero terms.
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Solution: Assuming the solution of

(1 − x2)y′ − 2xy = 0 (3.65)

has a series expansion about x = 0, work out the recursion relation and write out the first four
non-zero terms.

Solution: Since x = 0 is the ordinary point of the above differential equation(3.65). Let the
series solution of the equation (3.65) near x = 0 be

y(x) =

∞∑

n=0

anxn, |x| < 1 so y′(x) =

∞∑

n=0

annxn−1, x2y′(x) =

∞∑

n=0

annxn+1, |x| < 1

and xy =

∞∑

n=0

anxn+1.Then the given equation becomes
∞∑

n=0

annxn−1 −
∞∑

n=0

an(n + 2)xn+1 = 0.

Once again, the first term is a problem because it doesn’t have the same form as the other two.
So, take

∞∑

n=0

annxn−1

and put n− 1 = m + 1 and, hence, n = m + 2. When n = 0, m = −2 and when n = 1, m = −1. Thus

∞∑

n=0

annxn−1 =

∞∑

m=−2

am+2(m + 2)xm+1

and, once again renaming m as n we get

∞∑

n=−2

(n + 2)an+2xn+1 −
∞∑

n=0

nanxn+1 − 2
∞∑

n=0

anxn+1 = 0.

The problem now is with the range that the first sum runs over. The n = −2 term is no problem,
it is zero, but the n = −1 term is a1. Thus, we write

∞∑

n=−2

(n + 2)an+2xn+1 = a1 +

∞∑

n=0

(n + 2)an+2xn+1

and the equation becomes

a1 +

∞∑

n=0

(n + 2)an+2xn+1 −
∞∑

n=0

annxn+1 − 2
∞∑

n=0

anxn+1 = 0.

Thus

a1 +

∞∑

n=0

[(n + 2)an+2 − nan − 2an]xn+1 = 0.

Notice that the summand starts with the x term. The recursion relation is therefore

an+2 = an
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with the additional conditions a1 = 0. Hence, a6 = a4 = a2 = a0, a5 = a3 = a1 = 0 and so on. The
first four nonzero terms of the expansion gives

y = a0(1 + x2 + x4 + x6 + · · · ), |x| < 1.

Example 3.29 Assuming the solution of

y′′ − 3y′ + 2y = 0

has a series expansion about x = 0, by substitution, work out the recursion relation. If y(0) = 1
and y′(0) = 0 what are the first five non-zero terms.

Solution: Here p1(x) = −3 and p0(x) = 2. So x = 0 is the ordinary point. Let the series solution
of the above ODE near x = 0 be

y(x) =

∞∑

n=0

anxn, |x| < ∞

so, y′(x) =

∞∑

n=0

nanxn−1, |x| < ∞ and y′′(x) =

∞∑

n=0

n(n − 1)anxn−2, |x| < ∞

Thus,
∞∑

n=0

n(n − 1)anxn−2 − 3
∞∑

n=0

nanxn−1 + 2
∞∑

n=0

anxn = 0.

Again, we want to make each part look the same. As before, changing the index gives

y′ =

∞∑

n=0

nanxn−1 =

∞∑

n=0

(n + 1)an+1xn.

The same thing can be done with the y′′: let m = n − 2 to get

∞∑

n=0

n(n − 1)anxn−2 =

∞∑

m=−2

(m + 1)(m + 2)am+2xm

and the m = −2 and m = −1 terms are both zero, so, renaming the m as n we get

∞∑

n=0

(n + 1)(n + 2)an+2xn − 3
∞∑

n=0

(n + 1)an+1xn + 2
∞∑

n=0

anxn = 0

and this gives
∞∑

n=0

[(n + 1)(n + 2)an+2 − 3(n + 1)an+1 + 2an]xn = 0.

The recursion relation is

(n + 1)(n + 2)an+2 − 3(n + 1)an+1 + 2an = 0.

Now apply the initial conditions, y(0) = 1 implies that a0 = 1, y′(0) = 0 implies a1 = 0. For n = 0
the recursion relation gives

2a2 − 3a1 + 2a0 = 0
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and so a2 = −a0 = −1. Next n = 1 gives

6a3 − 6a2 + 2a1 = 0

and so a3 = a2 = −a0 = −1. Next n = 2 gives

12a4 − 9a3 + 2a2 = 0

and so a3 = a2 = −a0 = −1, a4 = − 7
12 . Next n = 3 gives

20a5 − 12a4 + 2a3 = 0

and so a3 = a2 = −a0 = −1, a4 = − 7
12 , a5 = − 1

4 . Therefore the first fives nonzero terms are

y(x) = 1 − x2 − x3 − 7
12

x4 − 1
4

x5 − · · · , |x| < ∞.

3.12 Multiple Choice Questions

1. Consider the following statement P and Q: GATE(MA)-2016
(P) : x2y′′+ xy′+ (x2− 1

4 )y = 0 has two linearly independent Frobenius series solution near
x = 0.
(Q) : x2y′′ + 3 sin xy′ + y = 0 has two linearly independent Frobenius series solution near
x = 0.
which of the following statements hold TRUE?
(A) both P and Q (B) only P (C) only Q (D) Neither P nor Q.
Ans. (A).

2. Determine the singular points of the following differential equation

x2(x − 1)2 d2 y
dx2 + 2(x − 2) dy

dx + (x + 3)y = 0

A) 1, 3 B) −1, 0 C) 0, 1 D) −1,−2
Ans. C)
Hint. Let the given differential equation is compare with the differential equation (3.1)
then P0(x) = x2(x − 1)2,P1(x) = 2(x − 2) and P2(x) = (x + 3). Since P0(0) = 0 and P0(1) = 0
so both 0 and 1 are the singular points.

3. If
∞∑

m=0
cmxr+m is assumed to be a solution of

x2y
′′ − xy

′ − 3(1 + x2)y = 0

then the values of r are GATE(MA)-12
A) 1, 3 B) −1, 3 C) 1,−3 D) −1,−3
Ans. B)
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4. For the differential equation

(x − 1)y
′′

+ (cotπx)y
′
+ (cosec2πx)y = 0,

which of the following statement is true GATE(MA)-06
(A) 0 is regular and 1 is irregular (B) 0 is regular and 1 is regular
(C) Both 0 and 1 are regular (D) Both 0 and 1 are irregular
Ans. A)

5. The initial value problem xy′′ + y′ + xy = 0, y(0) = 0, ( ∂y
∂x )x=0 = 0 has GATE(MA)-06

(A) Unique solution (B) No solution
(C) Infinite number of Solution (D) Two independent solutions
Ans. B)

6. For the differential equation GATE(MA)-05

x2(1 − x)
d2y
dx2 + x

dy
dx

+ y = 0

A) x = 1 is an ordinary point. B) x = 1 is a regular singular point.
C) x = 0 is an irregular singular point. D) x = 0 is an ordinary point.
Ans. B)

7. It is required to find the solution of differential equation

2x(2x + 3)y
′′

+ 2(3 + x)y
′ − xy = 0

around x = 0. The roots of the indicial equation are GATE(MA)-05
A) 0, 1

2 B) 0, 2 C) 1
2 ,

1
2 D) 0,− 1

2
Ans. D)

8. It is required to find the solution of differential equation

2x(2 + x)y
′′ − 2(3 + x)y

′
+ xy = 0

around x = 0. The roots of the indicial equation are GATE(MA)-05
A) 0, 1

2 B) 0, 2 C) 1
2 ,

1
2 D) 0,− 1

2
Ans. B)

9. The indicial equation for

x(1 + x2)y
′′

+ (cos x)y
′
+ (1 − 3x + x2)y = 0 is

A) r2 − r = 0 B) r2 + r = 0 C) r2 = 0 D) r2 − 1 = 0 GATE(MA)-04
Ans. C)

10. For
x(x − 1)y

′′
+ (sin x)y

′
+ 2x(x − 1)y = 0

consider the following statements
P: x = 0 is a regular singular point.
Q: x = 1 is a regular singular point. GATE(MA)-08
A) both P and Q are true. B) P is false and Q is true.
C) P is true and Q is false. D) both P and Q are false.
Ans. B)
Hint. sin x

x → 0 as x→ 0. So x = 0 is a ordinary point.
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11. The ordinary differential equation

2x2 d2 y
dx2 + 7x(x + 1) dy

dx − 3y = 0.

Find the correct statement
A: x = 1 is a regular singular point.
B: x = 1 is a regular singular point.
C: all x(x , 0) are ordinary points.
D: x , 0 is a regular singular point.
Ans. A) and C).
Hint.: The given differential equation 2x2 d2 y

dx2 + 7x(x + 1) dy
dx − 3y = 0, can be written as

d2 y
dx2 +

7x(x+1)
2x2

dy
dx − 3

2x2 y = 0. The given differential equation is compare with the differential
equation (3.1) then p1(x) =

7x(x+1)
2x2 and p0(x) = − 3

2x2 . Since neither lim
x→0

p1(x) nor lim
x→0

p0(x)

does exist. So p1(x) and p0(x) are not analytic at x = 0. Hence, x = 0 is the singular
point of the said differential equation. Now lim

x→x0
(x − x0)p1(x) = lim

x→0
(x − 0) 7x(x+1)

2x2 = 7
2 and

lim
x→x0

(x − x0)2p0(x) = lim
x→0

(x − 0)2
(
−3
2x2

)
= − 3

2 are both exist and finite so the point x = 0 is a

regular singular point. All points x (x , 0) are ordinary points.

12. The ordinary differential equation

d2y
dx2 −

2x
1 − x2

dy
dx

+
n(n + 1)
1 − x2 y = 0 (3.66)

Find the correct statement
A: x = 1 is only a regular singular point.
B: x = −1 is only a regular singular point.
C: x = ∞ is only a singular point.
D: x = 1,−1,∞ are regular singular points.
Ans. D).
Hint.: Substituting x = 1

t to the given equation. Then

dy
dx

= −t2 dy
dt

and
d2y
dx2 = t4 d2y

dt2 + 2t3 dy
dt

Using these substitution the given equation reduces to

t4 d2y
dt2 +

2t3

t2 − 1
dy
dt

+
n(n + 1)t2

t2 − 1
y = 0 (3.67)

Since t = 0 is a singular point of equation (3.67), so x = ∞ is a singular point of the given
differential equation (3.66).
Similarly, we can show that x = 1,−1 are also regular singular points of (3.66).

13. Suppose the equation
x2y

′′ − xy
′
+ (1 + x2)y = 0

has a solution of the form y =
∞∑

n=0
cnxn+r. GATE(MA)-07

i) The indicial equation for r is
A) r2 − 1 = 0 B) (r − 1)2 = 0 C) (r + 1)2 = 0 D) r2 + 1 = 0
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Ans. B)
ii) For n ≥ 2 the co-efficient of cn will be satisfy the relation
A) n2cn − cn−2 = 0 B) n2cn + cn−2 = 0
C) cn − cn−2 = 0 D) cn + cn−2 = 0
Ans. B)

14. If y =
∞∑

m=0
amxm is a solution of y′′ + xy′ + 3y = 0 then am

am+2
. GATE(MA)-04

A) (m+1)(m+2)
m+3 B) − (m+1)(m+2)

m+3 C) −m(m−1)
m+3 D) m(m−1)

m+3
Ans. B)

3.13 Review Exercise

1 Show that x = 0 is an ordinary point of (x2 + 1)y′′ + xy′ − xy = 0.

2 Show that y′′ + exy = 0 has a solution φ of the form

φ(x) =

∞∑

k=0

ckxk

which satisfies φ(0) = 1, φ′(0) = 0.

3 Determine all the singular points of the equation 2x2y′′ − xy′ + (x + 2)y = 0.
Ans: x = 0.

4 Show that x = 0 is a regular singular point and x = −1 is not regular singular points of
x2(x + 1)2y′′ + (x2 − 1)y′ + 2y = 0.

5 Show that infinity is not a regular singular point for the equation

y′′ + ay′ + by = 0,

where a, b are constants, not both zero.

6 Show that infinity is not a regular singular point for the Bessel equation

x2y′′ + xy′ + (x2 − α2)y = 0.

Hint. See the section 5.2 in Chapter 5.

7 Show that infinity is a regular singular point for the Legendre equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0,

where α is constant.

8 Find the power series solution of of the following equations
(i) (1 − x2)y′′ + 2xy′ − y = 0 about x = 0.
[Ans :y = A(1 + 1

2 x2 − 1
24 x4 − · · · ) + B(x − 1

6 x3 − 1
120 x5 − · · · ), |x| < 1]

(ii)(1 + x2)y′′ + xy′ − y = 0 about x = 0.
[Ans :y = A(1 + 1

2 x2 − 1
8 x4 + 1

15 x6 − · · · ) + Bx, |x| < 1]
(iii)(x2 − 1)y′′ + 4xy′ + 2y = 0 about x = 0.
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[Ans :y = A(1 + x2 + x4 + · · · ) + B(x + x3 + x5 + · · · ), |x| < 1]
(iv)y′′ − xy′ + 2y = 0 about x = 1.
[Ans :y = A(1 − (x − 1)2 − 1

3 (x − 1)3 − · · · ) + B((x − 1) + 1
2 (x − 1)2 − · · · ), |x − 1| < 1].

9 Find the power series solution of the initial value problem
(i) (1 − x2)y′′ + 2y = 0, y(0) = 4, y′(0) = 5.
[Ans :y = 4 + 5x − 4x2 − 5

3 x3 − 1
3 x5 + · · · , −1 < x < 1]

(ii) (x2 − 1)y′′ + 3xy′ + xy = 0, y(0) = 2, y′(0) = 3.
[Ans.y = 2 + 3x + 11

6 x3 + 1
4 x4 − · · · , −1 < x < 1]

(iii)(x2 − 1)y′′ + 3xy′ + xy = 0, y(2) = 4, y′(2) = 6.
[Ans :y = 4 + 6(x − 2) − 22

3 (x − 2)2 + 169
27 (x − 2)3 − · · · .

10 Solve xy′′ + (1 + x)y′ + 2y = 0 in series near x = 0.
[Ans :y = A(1− 2x + 3

2! x
2 − 4

3! x
3 + · · · ) + B log x{1− 2x + 3

2! x
2 − 4

3! x
3 + 2(2− 1

2 )x− 3
2! (− 1

3 + 2 +
1
2 )x2 + · · · }, 0 < x < ∞]

11 Solve 2x2y′′ + xy′ − (x + 1)y = 0 in series near x = 0.
[Ans :y = Ax(1 + 1

5 x + 1
70 x2 + · · · ) + Bx−

1
2 (1 − x − 1

2 x2 + · · · ), 0 < x < ∞]

12 Solve x2(x + 1)y′′ + x(x + 1)y′ − y = 0
[Ans :y = A(1 − x

3 + x2

6 + · · · ) + Bx−1(1 + x), 0 < x < 1]

13 Solve x2y′′ + y′ + y = 0
[Ans :y = (A + B log x)(1 − x

1 + x2

12.22 + · · · ) + 2B(1 − 3x2

2 + · · · ), 0 < x < ∞]

14 Solve 2x2(x − 1)y′′ + x(3x + 1)y′ − 2y = 0 in series, convergent near x = ∞.

Ans: y = A
[
1 + 2

x + 7
3x2 + · · ·

]
+ Bx

−1
2

[
1 + 4

3x + 22
15x2 + · · ·

]
in |x| > 1.

Hint. Put x = 1
z , we get dy

dx = −z2 dy
dz and d2 y

dx2 = z4 d2 y
dz2 + 2z3 dy

dz . Putting the values of
dy
dx and d2 y

dx2 in the given equation, we get 2(z − z2) d2 y
dz2 + (1 − 5z) dy

dz − 2y = 0 which is
to be solve in the series about z = 0 is a regular singular point. Then the solution is

y = A
[
1 + 2

x + 7
3x2 + · · ·

]
+ Bx

−1
2

[
1 + 4

3x + 22
15x2 + · · ·

]
in |x| > 1.

15 Solve y′′ + x2y = 2 + x + x2 about x = 0.
Ans: y = A

(
1 − x4

12 + x8

672 − · · ·
)

+ B
(
x − x5

20 + x9

140 − · · ·
)

+ x2 + x3

6 + x4

12 − x6

30 + · · · .
16 Solve y′′ − y = x in power of x.

Ans: y = A
(
1 + x2

2! + x4

4! + x6

6! + · · ·
)

+ B
(
x + x3

3! + x5

5! + · · ·
)

+ x3

3 + x5

5 + x7

7 + · · · .



Chapter 4

Legendre Equations
4.1 Introduction
Legendres equation occurs in many areas of applied mathematics, physics, biomathematics
and chemistry in physical situations. These polynomials may be constructed as a consequence
of demanding a complete, orthogonal set of functions over the interval [−1, 1]. In quantum
mechanics they represent angular momentum eigenfunctions. The Legendre functions are
the solutions of Legendres equation, a second order linear differential equation with variable
coefficients. The said equation was introduced by Legendre in the late 18th century.

4.2 Legendre’s Equation

The ordinary differential equation of the from

(1 − x2)
d2y
dx2 − 2x

dy
dx

+ n(n + 1)y = 0 (4.1)

⇒ d
dx

{
(1 − x2)

dy
dx

}
+ n(n + 1)y = 0

is called Legendre’s equation where n is a positive integer, called the order of the equation.
Now, comparing the above differential equation with (3.1), we have p0(x) =

n(n+1)
1−x2 , p1(x) = − 2x

1−x2 .
So x = ± 1 is the singular points. Next, p0(0) = n(n + 1), p1(0) = 0 so the point x = 0 is the
ordinary point. Also lim

x→1
(x − 1)p1(x) = 1 and lim

x→1
(x − 1)2p0(x) = 0, so x = 1 is a regular singular

point of (4.1). Similarly, x = −1 is also a regular singular point of the said differential equation.
The physically interesting range for x is−1 < x < 1. Also from the previous example-3.4, we say
that x = ∞ is singular point of Legendres equation (4.1). We solve (4.1) in series of descending
powers of x. Let the series solution of (4.1) is

y =

∞∑

m=0

amxr−m; a0 , 0, −1 < x < 1 (4.2)

Differentiating twice (4.2) in a succession, we get

y
′
=

∞∑

m=0

(r −m)amxr−m−1 and y
′′

=

∞∑

m=0

(r −m)(r −m − 1)amxr−m−2
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Putting these values y, y′ and y′′ in (4.1) we get

(1 − x2)
∞∑

m=0

(r −m)(r −m − 1)amxr−m−2 − 2x
∞∑

m=0

(r −m)amxr−m−1 + n(n + 1)
∞∑

m=0

amxr−m = 0

⇒
∞∑

m=0

(r −m)(r −m − 1)amxr−m−2 −
∞∑

m=0

(r −m)(r −m − 1)amxr−m

−2
∞∑

m=0

(r −m)amxr−m + n(n + 1)
∞∑

m=0

amxr−m = 0

⇒
∞∑

m=0

(r −m)(r −m − 1)amxr−m−2 −
∞∑

m=0

am(r −m − n)(r −m + n + 1)xr−m = 0

Equating to zero the coefficient of highest power of x, namely xr,we obtain

a0(r − n)(r + n + 1) = 0

Since a0 , 0 we have the indicial equation as

(r − n)(r + n + 1) = 0 so that the roots of the indicial equation are r = n and r = −(n + 1).

Here the roots of the indicial equation are unequal and differ by an integer. Next equating zero
the coefficient of xr−m, we obtain the recurrence relation as

(r −m + 2)(r −m + 1)am−2 − (r −m − n)(r −m + n + 1)am = 0

⇒ am =
(r −m + 2)(r −m + 1)

(r −m − n)(r −m + n + 1)
am−2 (4.3)

Next equating the coefficient xr−1 and we get a1(r − 1 − n)(r + n) = 0. As r = n and r = −(n + 1),
so neither (r − 1 − n) nor (r + n) is zero. Therefore a1 = 0 for both the roots of indicial equation
r = n and r = −(n + 1). Using a1 = 0 and (4.3), we get

a1 = a3 = a5 = a7 = · · · = 0

To obtain a2, a4, a6, a8, · · · , we consider two cases
Case-I: When r = n. Then (4.3) becomes

am = − (n −m + 2)(n −m + 1)
m(2n −m + 1)

am−2 (4.4)

Putting m = 2, 4, 6, · · · in (4.4), we have

a2 = − n(n − 1)
2(2n − 1)

a0

a4 = − (n − 2)(n − 3)
4(2n − 3)

a2 =
n(n − 1)(n − 2)(n − 3)
2.4.(2n − 1)(2n − 3)

a0 and so on

Putting these values in (4.2), and replacing a0 by A, we get

y = A
[
xn − n(n − 1)

2(2n − 1)
xn−2 +

n(n − 1)(n − 2)(n − 3)
2.4.(2n − 1)(2n − 3)

xn−4 − · · ·
]

(4.5)
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The last term is constant when n is even or contain x when n is odd.
Case-II: When r = −(n + 1). Then (4.3) becomes

am =
(n + m − 1)(n + m)

m(2n + m + 1)
am−2 (4.6)

Putting m = 2, 4, 6, · · · in (4.6), we have

a2 =
(n + 1)(n + 2)

2(2n + 3)
a0

a4 =
(n + 3)(n + 4)

4(2n + 5)
a2 =

(n + 1)(n + 2)(n + 3)(n + 4)
2.4.(2n + 3)(2n + 5)

a0 and so on

Putting these values in (4.2), and replacing a0 by B, we get

y = B
[
x−n−1 +

(n + 1)(n + 2)
2(2n + 3)

x−n−3 +
(n + 1)(n + 2)(n + 3)(n + 4)

2.4.(2n + 3)(2n + 5)
x−n−5 + · · ·

]
(4.7)

Thus, the two independent solutions of Legendre’s equation are given by equation (4.5) and
(4.7). If we take a =

[1.3.5···(2n−1)]
n! , the solution (4.5) is called Legendre’s function of the first kind

or Legendre’s polynomial of degree n and is denoted by Pn(x). If b = n
[1.3.5···(2n+1)] , the solution

(4.7) is called Legendre’s function of the second kind and is denoted by Qn(x). Hence the
general solution of (4.1) is given by y = APn(x) + BQn(x), where A and B are arbitrary constants.

4.3 Legendre’s polynomial of degree n

Legendre’s function or polynomial of degree n is denoted by Pn(x) and is defined by

Pn(x) =
[1.3.5 · · · (2n − 1)]

n!

[
xn − n(n − 1)

2(2n − 1)
xn−2 +

n(n − 1)(n − 2)(n − 3)
2.4.(2n − 1)(2n − 3)

xn−4 − · · ·
]

(4.8)

⇒ Pn(x) =

[ n
2 ]∑

r=0

(−1)r (2n − 2r)!
2nr!(n − r)!(n − 2r)!

xn−2r, where
[n

2

]
=


n
2 ; if n is even
n−1

2 ; if n is odd

Putting n = 0, 1, 2, 3, 4, 5, · · · in (4.8), we get

P0(x) =
1
0!

x0 = 1

P1(x) =
1
1!

x1 = x

P2(x) =
1.3
2!

[
x2 − 2.1

2.3

]
=

1
2

(3x2 − 1)

P3(x) =
1.3.5

3!

[
x3 − 3.2

2.5
x
]

=
1
2

(5x3 − 3x)

P4(x) =
1.3.5.7

4!

[
x4 − 4.3

2.7
x2 +

4.3.2.1
2.4.7.5

]
=

1
8

(35x4 − 30x2 + 3)

P5(x) =
1.3.5.7.9

5!

[
x5 − 5.4

2.9
x3 +

5.4.3.2
2.4.9.7

x
]

=
1
8

(63x5 − 70x3 + 15x) and so on
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4.4 Generating Function For Legendre’s Polynomial

Theorem 4.1 Pn(x) is the coefficient of hn in the expansion of (1− 2xh + h2)−
1
2 in the ascending

power of x, i.e

(1 − 2xh + h2)−
1
2 =

∞∑
n=0

hnPn(x), |x| ≤ 1, |h| < 1

Proof: Since |h| < 1 and |x| ≤ 1, we get

(1 − 2xh + h2)−
1
2 = [1 − h(2x − h)]−

1
2 = 1 +

1
2

h(2x − h) +
1.3
2.4

h2(2x − h)2 + · · ·

+
1.3 · · · (2n − 3)
2.4 · · · (2n − 2)

hn−1(2x − h)n−1 +
1.3 · · · (2n − 3)(2n − 1)

2.4 · · · (2n − 2)2n
hn(2x − h)n + · · · (4.9)

Now the coefficient of hn in 1.3···(2n−3)(2n−1)
2·4···(2n−2)2n hn(2x − h)n is

=
1.3 · · · (2n − 3)(2n − 1)

2.4 · · · (2n − 2)2n
(2x)n =

1.3 · · · (2n − 1)2n

(2 · 1) · (2 · 2) · (2 · 3) · · · (2 · n)
xn

=
1.3 · · · (2n − 1)

2n · n!
2nxn =

1 · 3 · · · (2n − 1)
n!

xn (4.10)

Again coefficient of hn in 1.3···(2n−3)
2·4···(2n−2) h

n−1(2x − h)n−1 is

=
1 · 3 · · · (2n − 3)

(2 · 1) · (2 · 2) · · · (2(n − 1))
{−(n − 1)(2x)n−2}

= − 1 · 3 · · · (2n − 3)
2n−1 · 1 · 2 · 3 · · · (n − 1)

· 2n − 1
n
· n

2n − 1
{(n − 1) · 2n−2 · xn−2}

= −1 · 3 · · · (2n − 3)(2n − 1)
n!

n(n − 1)
2(2n − 1)

xn−2 and so on. (4.11)

Using (4.10), (4.11) · · · we see that the coefficient of hn in the expansion of (1 − 2xh + h2)−
1
2 is

given by

[1 · 3 · 5 · · · (2n − 1)]
n!

[xn − n(n − 1)
2(2n − 1)

xn−2 +
n(n − 1)(n − 2)(n − 3)
2 · 4 · (2n − 1)(2n − 3)

xn−4 − · · · ] = Pn(x)

Now P1(x), P2(x),· · · will be the coefficient of h, h2, · · · in the expansion of (1 − 2xh + h2)−
1
2 .

Therefore (1 − 2xh + h2)−
1
2 =

∞∑

n=0

hnPn(x).

Theorem 4.2 Show that (a) Pn(1) = 1 (b) Pn(−x) = (−1)nPn(x), hence deduce that Pn(−1) =

(−1)n where Pn(x) is the Legendre’s Polynomials of degree n.

Proof: (a) From the generating function, we know that

(1 − 2xh + h2)−
1
2 =

∞∑
n=0

hnPn(x)
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Putting x = 1, we get

(1 − 2h + h2)−
1
2 =

∞∑

n=0

hnPn(1)⇒
∞∑

n=0

hnPn(1) = (1 − h)−1 = 1 + h + h2 + · · · =
∞∑

n=0

hn

Equating the coefficient of hn, we get Pn(1) = 1.
(b) From the generating function, we know that

(1 − 2xh + h2)−
1
2 =

∞∑

n=0

hnPn(x) (4.12)

Replacing h by −h in (4.12)

(1 + 2xh + h2)−
1
2 =

∞∑

n=0

(−h)nPn(x) =

∞∑

n=0

(−1)nhnPn(x) (4.13)

Again replacing x by −x in (4.12) we get,

(1 + 2xh + h2)−
1
2 =

∞∑

n=0

hnPn(−x) (4.14)

From (4.13) and (4.14), we get

∞∑
n=0

hnPn(−x) =
∞∑

n=0
(−1)nhnPn(x)

Equating the coefficient of hn, we get

Pn(−x) = (−1)nPn(x)

Next putting x = 1, we get

Pn(−1) = (−1)nPn(1)⇒ Pn(−1) = (−1)n, [Since Pn(1) = 1]

Theorem 4.3 (Recurrence Relation I) Prove that
(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x),n ≥ 1 or

nPn(x) = (2n − 1)xPn−1(x) − (n − 1)Pn−2(x),n ≥ 2
where Pn(x) is the Legendre’s Polynomial of degree n.

Proof: From the generating function, we get

(1 − 2xh + h2)−
1
2 =

∞∑

n=0

hnPn(x), |x| ≤ 1, |h| < 1 (4.15)

Differentiating both side of (4.15) with respect to h, we get

− 1
2

(1 − 2xh + h2)−
3
2 (−2x + 2h) =

∞∑

n=0

nhn−1Pn(x) (4.16)
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Multiplying both sides by (1 − 2xh + h2), (4.16) gives

(x − h)(1 − 2xh + h2)−
1
2 = (1 − 2xh + h2)

∞∑

n=0

nhn−1Pn(x)

⇒ (x − h)
∞∑

n=0

hnPn(x) = (1 − 2xh + h2)
∞∑

n=1

nhn−1Pn(x)[By (4.15)]

⇒ x
∞∑

n=0

hnPn(x) −
∞∑

n=0

hn+1Pn(x) =

∞∑

n=0

nhn−1Pn(x) − 2x
∞∑

n=0

nhnPn(x) +

∞∑

n=0

nhn+1Pn(x)

Equating the coefficient of hn from both sides, we get

xpn(x) − Pn−1(x) = (n + 1)Pn+1(x) − 2xnPn(x) + (n − 1)Pn−1(x)

⇒ (n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x)

Replacing n by (n − 1), we get, nPn(x) = (2n − 1)xPn−1(x) − (n − 1)Pn−2(x). (4.17)

Theorem 4.4 (Recurrence Relation II) Prove that

nPn(x) = xP
′
n(x) − P

′
n−1(x), where Pn(x) is the Legendre’s Polynomial of degree n.

Proof: From the generating function, we get

(1 − 2xh + h2)−
1
2 =

∞∑

n=0

hnPn(x), |x| ≤ 1, |h| < 1 (4.18)

Differentiating both side of (4.18) with respect to h, we get

− 1
2

(1 − 2xh + h2)−
3
2 (−2x + 2h) =

∞∑

n=0

nhn−1Pn(x) (4.19)

Again, differentiating (4.18) with respect to x, we get,

h(1 − 2xh + h2)−
3
2 =

∞∑

n=0

hnP
′
n(x)

⇒ h(x − h)(1 − 2xh + h2)−
3
2 = (x − h)

∞∑

n=0

hnP
′
n(x) [Multiplying both side by (x − h)]

⇒ h
∞∑

n=0

nhn−1Pn(x) = (x − h)
∞∑

n=0

hnP
′
n(x) [by (4.19)]

⇒
∞∑

n=0

nhnPn(x) = x
∞∑

n=0

hnP
′
n(x) −

∞∑

n=0

hn+1P
′
n(x)

Equating the coefficient of hn on both sides we get nPn(x) = xP′n(x) − P′n−1(x).

Theorem 4.5 (Recurrence Relation III) Prove that

(2n + 1)Pn(x) = P
′
n+1(x) − P

′
n−1(x), where Pn(x) is the Legendre’s Polynomial of degree n.

Proof: From recurrence relation-I, we get
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(2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x)

Differentiating with respect to x, we get

(2n + 1)xP
′
n(x) + (2n + 1)Pn(x) = (n + 1)P

′
n+1(x) + nP

′
n−1(x)

⇒ (2n + 1)(nPn(x) + P
′
n−1(x)) + (2n + 1)Pn(x) = (n + 1)P

′
n+1(x) + nP

′
n−1(x)

[from recurrence relation-II, xP′n(x) = nPn(x) + P′n−1(x)]

⇒ (2n + 1)(n + 1)Pn(x) = (n + 1)P
′
n+1(x) − (n + 1)P

′
n−1(x)

⇒ (2n + 1)Pn(x) = P
′
n+1(x) − P

′
n−1(x)

Theorem 4.6 (Recurrence Relation IV) Prove that

(n + 1)Pn(x) = P
′
n+1(x) − xP

′
n(x), where Pn(x) is the Legendre’s Polynomial of degree n.

Proof: From recurrence relations II and III, we get

nPn(x) = xP
′
n(x) − P

′
n−1(x) (4.20)

and (2n + 1)Pn(x) = P
′
n+1(x) − P

′
n−1(x) (4.21)

Subtracting (4.20) from (4.21), we get, (n + 1)Pn(x) = P′n+1(x) − xP′n(x).
Theorem 4.7 (Recurrence Relation V) Prove that

(1 − x2)P
′
n(x) = n(Pn−1(x) − xPn(x)), where Pn(x) is the Legendre’s Polynomial of degree n.

Proof: From recurrence relations II and IV, we get

nPn(x) = xP
′
n(x) − P

′
n−1(x) (4.22)

and (n + 1)Pn(x) = P
′
n+1(x) − xP

′
n(x) (4.23)

Replacing n by (n − 1) in (4.23)

nPn−1(x) = P
′
n(x) − xP

′
n−1(x) (4.24)

Multiplying both side of (4.22) by x , we get

nxPn(x) = x2P
′
n(x) − xP

′
n−1(x) (4.25)

Subtracting (4.25) from (4.24) , we get, n(Pn−1(x) − xPn(x)) = (1 − x2)P′n(x).

Theorem 4.8 (Recurrence Relation VI) Prove that

(1−x2)P
′
n(x) = (n+1)(xPn(x)−Pn+1(x)), where Pn(x) is the Legendre’s Polynomial of degree n.

Proof: From recurrence relation I , we get

(2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x)

⇒ [(n + 1) + n]xPn(x) = (n + 1)Pn+1(x) + nPn−1(x)

⇒ (n + 1)(xPn(x) − Pn+1(x)) = n(Pn−1(x) − xPn(x)) (4.26)

From recurrence relation V, we get

(1 − x2)P
′
n(x) = n(Pn−1(x) − xPn(x)) (4.27)

From equation (4.26) and (4.27), we get
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(1 − x2)P′n(x) = (n + 1)(xPn(x) − Pn+1(x))

4.5 Orthogonal Properties of Legendre’s Function

Theorem 4.9 Prove that
1∫
−1

Pm(x)Pn(x)dx = 0 if m , n.

Where Pn(x) and Pm(x) are the Legendre’s polynomial of degree n and m respectively.

Proof: The Legendre’s equation is given by

(1 − x2) d2 y
dx2 − 2x dy

dx + n(n + 1)y = 0

Since Pn(x) and Pm(x) satisfies Legendre’s equation, we get

(1 − x2)P
′′
n(x) − 2xP

′
n(x) + n(n + 1)Pn(x) = 0 (4.28)

(1 − x2)P
′′
m(x) − 2xP

′
m(x) + m(m + 1)Pm(x) = 0 (4.29)

Multiplying (4.28) by Pm(x) and (4.29) by Pn(x) and then subtracting the resulting equation, we
get

(1 − x2)(Pn(x)P
′′
m(x) − Pm(x)P

′′
n(x)) − 2x(Pn(x)P

′
m(x) − Pm(x)P

′
n(x)) +

[(m(m + 1) − n(n + 1))]Pm(x)Pn(x) = 0

⇒ (1 − x2)
d

dx

{
Pn(x)P

′
m(x) − Pm(x)P

′
n(x)

}
− 2x

{
Pn(x)P

′
m(x) − Pm(x)P

′
n(x)

}

= [(n −m)(n + m + 1)]Pm(x)Pn(x)

⇒ d
dx

{
(1 − x2)(Pn(x)P

′
m(x) − Pm(x)P

′
n(x))

}
= [(n −m)(n + m + 1)]Pm(x)Pn(x)

Integrating both side with respect to x from -1 to 1, we get

1∫

−1

d
dx
{(1 − x2)(Pn(x)P

′
m(x) − Pm(x)P

′
n(x))}dx = [(n −m)(n + m + 1)]

1∫

−1

Pm(x)Pn(x)dx

⇒ [(1 − x2)(Pn(x)P
′
m(x) − Pm(x)P

′
n(x))]1

−1 = [(n −m)(n + m + 1)]

1∫

−1

Pm(x)Pn(x)dx

Therefore

1∫

−1

Pm(x)Pn(x)dx = 0, as m , n.

Theorem 4.10 Prove that

1∫

−1

[Pn(x)]2dx =
2

2n + 1
, where Pn(x) is the Legendre’s polynomial of degree n.
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Proof: From generating function of Legendre polynomials, we get
∞∑

n=0

hnPn(x) = (1 − 2xh + h2)−
1
2 , |x| ≤ 1, |h| < 1 (4.30)

or
∞∑

m=0

hmPm(x) = (1 − 2xh + h2)−
1
2 , |x| ≤ 1, |h| < 1 (4.31)

Multiplying the corresponding sides of (4.30) and (4.31), we get
∞∑

n=0

∞∑
m=0

hnhmPn(x)Pm(x) = (1 − 2xh + h2)−1

Integrating both sides of the above equation with respect to x we get

∞∑

n=0

∞∑

m=0

1∫

−1

{Pn(x)Pm(x)dx}hn+m =

1∫

−1

(1 − 2xh + h2)−1dx (4.32)

As,

1∫

−1

Pm(x)Pn(x)dx = 0 m , n (4.33)

Then (4.32) reduces to

∞∑

n=0

1∫

−1

[{Pn(x)}2dx]h2n =

1∫

−1

(1 − 2xh + h2)−1dx

⇒
∞∑

n=0

1∫

−1

[{Pn(x)}2dx]h2n =
[ log(1 + h2 − 2hx)

−2h

]1

−1

⇒
∞∑

n=0

1∫

−1

[{Pn(x)}2dx]h2n = − 1
2h

[
log(1 − h)2 − log(1 + h)2

]

⇒
∞∑

n=0

1∫

−1

[{Pn(x)}2dx]h2n =
1
h

[
log(1 + h) − log(1 − h)

]

⇒
∞∑

n=0

1∫

−1

[{Pn(x)}2dx]h2n =
1
h

[
(h − h2

2
+

h3

3
− · · · ) − (−h − h2

2
− h3

3
− · · · )

]

⇒
∞∑

n=0

1∫

−1

[{Pn(x)}2dx]h2n =
2
h

[
h +

h3

3
+

h5

5
+ · · ·

]

⇒
∞∑

n=0

1∫

−1

[
{Pn(x)}2dx

]
h2n =

2
h

∞∑

n=0

h2n+1

2n + 1

⇒
∞∑

n=0

1∫

−1

[{Pn(x)}2dx]h2n =

∞∑

n=0

2h2n

2n + 1
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Equating the coefficient of h2n both sides, we get,
1∫
−1

{
Pn(x)

}2

dx = 2
2n+1 .

Theorem 4.11 Prove that
Pn(x) = 1

2nn!
dn

dxn

{
(x2 − 1)n

}

where Pn(x) is the Legendre’s Polynomial of degree n which is also called Rodrigue’s formula.

Proof: Let

y = (x2 − 1)n

Differentiating with respect to x, we get

dy
dx = n(x2 − 1)n−1 · 2x

Multiplying both side by (x2 − 1), we get

(x2 − 1)
dy
dx

= 2nx(x2 − 1)n ⇒ (x2 − 1)
dy
dx

= 2nxy

Differentiating with respect to x, (n + 1) times by using the Leibnitz’s theorem, we get

(x2 − 1)
dn+2y
dxn+2 + (n + 1)

dn+1y
dxn+1 · 2x +

n(n + 1)
2

dny
dxn · 2 = 2n[x

dn+1y
dxn+1 + (n + 1)

dny
dxn ]

⇒ (1 − x2)
dn+2y
dxn+2 − 2x

dn+1y
dxn+1 + n(n + 1)

dny
dxn = 0

Putting z =
dn y
dxn , we get, (1 − x2) d2z

dx2 − 2x dz
dx + n(n + 1)z = 0 which is the Legendre’s equation and

one of the solution is

z = cPn(x)⇒ dny
dxn = cPn(x) (4.34)

Putting x = 1, we get, c = [ dn y
dxn ]x=1, since Pn(1) = 1. Now y = (x2 − 1)n = (x − 1)n(x + 1)n.

Differentiating n times with respect to x using Leibnitz’s theorem, we get dn y
dxn = (x2 − 1)n.n! +

nC1
n!
1! .(x + 1)n.(x − 1)n−1 + · · · + (x + 1)n.n!. Therefore [ dn y

dxn ]x=1 = (1 + 1)n.n! = 2n.n!. Hence
c = [ dn y

dxn ]x=1 = 2n · n!. Therefore from (4.34), we get, Pn(x) = 1
c

dn y
dxn = 1

2n.n!
dn

dxn (x2 − 1)n.

4.6 Expansion of f (x) in a series of Legendre Polynomials

Supposing the expansion of f (x) in a series Legendre polynomials to be possible, we write

f (x) =

∞∑

m=0

amPm(x) (4.35)
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where a0, a1, a2, · · · , an are constants. Multiplying both side of (4.35) by Pn(x) and then integrating
both side with respect to ′x′ from −1 to 1, we get

1∫

−1

f (x)Pn(x)dx =

∞∑

m=0

{ 1∫

−1

amPm(x)Pn(x)dx
}

⇒
1∫

−1

f (x)Pn(x)dx = an
2

2n + 1

[
as

1∫

−1

Pm(x)Pn(x)dx =


0; if m , n

2
2n+1 ; if m = n

]

⇒ an =
(
n +

1
2

) 1∫

−1

f (x)Pn(x)dx

Example 4.1 If

f (x) =


0; where −1 < x < 0
x; where 0 < x < 1

Show that
f (x) =

1
4

P0(x) +
1
2

P1(x) +
5
16

P2(x) − 3
32

P4(x) + · · ·

Solution: Given that f (x) =


0 ; where −1 < x < 0
x ; where 0 < x < 1

. We know that

f (x) =

∞∑

n=0

anPn(x) (4.36)

where an =
(
n +

1
2

) 1∫

−1

f (x)Pn(x)dx =
(
n +

1
2

) 1∫

0

xPn(x)dx, ∵ f (x) = 0, −1 < x < 0. (4.37)

Putting n = 0, 1, 2, · · · successively in (4.37), we get

a0 =
1
2

1∫

0

xP0(x)dx =
1
2

1∫

0

xdx =
1
4
, a1 =

3
2

1∫

0

xP1(x)dx =
3
2

1∫

0

x2dx =
1
2

a2 =
5
2

1∫

0

xP2(x)dx =
5
2

1∫

0

3x3 − x
2

dx =
5

16
, a3 =

7
2

1∫

0

xP3(x)dx =
7
2

1∫

0

5x4 − 3x2

2
dx = 0

a4 =
9
2

1∫

0

xP4(x)dx =
9
2

1∫

0

35x5 − 30x3 + 3
8

dx = − 3
32

and so on. Using these values in (4.38), we get

f (x) =
1
4

P0(x) +
1
2

P1(x) +
5

16
P2(x) − 3

32
P4(x) + · · ·
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Example 4.2 If

f (x) =


0; where −1 < x < 0
1; where 0 < x < 1

Show that
f (x) =

1
2

P0(x) +
3
4

P1(x) − 7
16

P3(x) + · · ·

Solution: Given that

f (x) =


0; where −1 < x < 0
1; where 0 < x < 1

We know that

f (x) =

∞∑

n=0

anPn(x) (4.38)

where an =
(
n +

1
2

) 1∫

−1

f (x)Pn(x)dx =
(
n +

1
2

) 1∫

0

Pn(x)dx (4.39)

Putting n = 0, 1, 2, · · · successively in (4.39), we get

a0 =
1
2

1∫

0

P0(x)dx =
1
2

1∫

0

1dx =
1
2
, a1 =

3
2

1∫

0

P1(x)dx =
3
2

1∫

0

xdx =
3
4

a2 =
5
2

1∫

0

P2(x)dx =
5
2

1∫

0

3x2 − 1
2

dx = 0, a3 =
7
2

1∫

0

P3(x)dx =
7
2

1∫

0

5x3 − 3x
2

dx = − 7
16

and so on. Using these values in (4.38), we get f (x) = 1
2 P0(x) + 3

4 P1(x) − 7
16 P3(x) + · · · .

4.7 Worked out Examples

Example 4.3 Show that
1∫
−1

x2Pn+1(x)Pn−1(x)dx =
2n(n+1)

(4n2−1)(2n+3)

Solution: From recurrence relation I, we get

(2n − 1)xPn−1(x) = nPn(x) + (n − 1)Pn−2(x) (4.40)

Replacing n by (n + 2) in (4.40), we get

(2n + 3)xPn+1(x) = (n + 2)Pn+2(x) + (n + 1)Pn(x) (4.41)
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Multiplying corresponding side of (4.40) and (4.41), we get

(2n + 3)(2n − 1)x2Pn−1(x)Pn+1(x) = n(n + 1)P2
n(x) + n(n + 2)Pn+2(x)Pn(x)

+(n − 1)(n + 2)Pn−2(x)Pn+2(x) + (n − 1)(n + 1)Pn−2(x)Pn(x) (4.42)

Integrating (4.42) with respect to x from -1 to 1, we get

(2n + 3)(2n − 1)

1∫

−1

x2Pn−1(x)Pn+1(x)dx = n(n + 1)

1∫

−1

P2
n(x)dx + n(n + 2)

1∫

−1

Pn+2(x)Pn(x)dx

+(n − 1)(n + 2)

1∫

−1

Pn−2(x)Pn+2(x)dx + (n − 1)(n + 1)

1∫

−1

Pn−2(x)Pn(x)dx (4.43)

Also we know that
1∫

−1

Pm(x)Pn(x)dx =


0; if m , n

2
2n+1 ; if m = n

(4.44)

Using (4.44), (4.43) reduces to

(2n + 3)(2n − 1)

1∫

−1

x2Pn−1(x)Pn+1(x)dx = n(n + 1)
2

2n + 1

⇒
1∫

−1

x2Pn−1(x)Pn+1(x)dx =
2n(n + 1)

(2n + 1)(2n + 3)(2n − 1)
=

2n(n + 1)
(4n2 − 1)(2n + 3)

Example 4.4 Prove that
1∫
−1

xPn(x)Pn−1(x)dx = 2n
(4n2−1)

Solution: From recurrence relation I, we get

(2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x)

⇒ xPn(x) =
(n + 1)

(2n + 1)
Pn+1(x) +

n
(2n + 1)

Pn−1(x) (4.45)

Multiplying corresponding side of (4.45) by Pn−1(x), and then integrating both side with respect
to ′x′ from -1 to 1, we get

1∫

−1

xPn(x)Pn−1(x)dx =
n + 1
2n + 1

1∫

−1

Pn+1(x)Pn−1(x)dx +
n

2n + 1

1∫

−1

{Pn−1(x)}2dx (4.46)

Also we know that
1∫

−1

Pm(x)Pn(x)dx =


0 ; if m , n

2
2n+1 ; if m = n

(4.47)
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Using above result(4.46) reduces to

1∫

−1

xPn(x)Pn−1(x)dx =
2

2(n − 1) + 1
× n

2n + 1
⇒

1∫

−1

xPn(x)Pn−1(x)dx =
2n

4n2 − 1

Example 4.5 Show that for any function f (x), for which the n − th derivative is continuous

1∫

−1

f (x)Pn(x)dx =
1

2nn!

1∫

−1

(1 − x2)n f (n)(x)dx

Solution: We know that Pn(x) = 1
2nn!

dn

dxn (x2 − 1)n. Now

1∫

−1

f (x)Pn(x)dx =
1

2nn!

1∫

−1

dn

dxn (x2 − 1)n f (x)dx

=
1

2nn!

[[ dn−1

dxn−1 (x2 − 1)n f (x)
]1

−1
−

1∫

−1

dn−1

dxn−1 (x2 − 1)n f
′
(x)dx

]
(4.48)

[ On Intigration by parts ]

Also
dn−1

dxn−1 (x2 − 1)n =
dn−1

dxn−1 (x − 1)n(x + 1)n

= (x − 1)n(n − 1)!(x + 1) +(n−1) C1n(x − 1)n−1(n − 2)!(x + 1)2 + · · · + (n − 1)!(x − 1)(x + 1)n

[ Since (uv)n = unv +n C1un−1v1 +n C2un−2v2 + · · · + uvn,where un =
dnu
dxn ].

Now we can easily seen that dn−1

dxn−1 (x2 − 1)n will be zero at x = 1 and x = −1. So first part of (4.48)
must be zero, so from (4.48) reduces to

1∫

−1

f (x)Pn(x)dx = −
1∫

−1

dn−1

dxn−1 (x2 − 1)n f
′
(x)dx

]
= (−1)n 1

2nn!

1∫

−1

(x2 − 1)n f (n)(x)dx

= (−1)n(−1)n 1
2nn!

1∫

−1

(1 − x2)n f (n)(x)dx =
1

2nn!

1∫

−1

(1 − x2)n f (n)(x)dx.

Example 4.6 Show that, when |h| < 1 and |x| ≤ 1

1∫

−1

Pn(x)(1 − 2xh + h2)−
1
2 dx =

2hn

2n + 1
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Solution: From generating function of Legendre polynomial, we get

(1 − 2xh + h2)−
1
2 =

∞∑

n=0

hnPn(x)

Multiplying both side by Pn(x), we get

⇒ Pn(x)√
1 − 2xh + h2

= Pn(x)
[
P0(x) + hP1(x) + · · · + hnPn(x) + · · ·

]

Integrating both side w.r.t x between -1 to 1, we get

⇒
1∫

−1

Pn(x)√
1 − 2xh + h2

dx =

1∫

−1

Pn(x)P0dx + h

1∫

−1

P1Pndx + · · ·

+ hn

1∫

−1

[Pn(x)]2dx +

1∫

−1

Pn(x)Pn+1dx + · · ·

⇒
1∫

−1

Pn(x)(1 − 2xh + h2)−
1
2 dx =

2hn

2n + 1

[
as

1∫

−1

Pm(x)Pn(x)dx =


0 ; if m , n

2
2n+1 ; if m = n

]

Example 4.7 Prove that
(2n + 1)(x2 − 1)P′n(x) = n(n + 1)(Pn+1(x) − Pn−1(x))

Proof: From recurrence relations V and VI, we get

(1 − x2)P
′
n(x) = n(Pn−1(x) − xPn(x)) (4.49)

(1 − x2)P
′
n(x) = (n + 1)(xPn(x) − Pn+1(x)) (4.50)

Multiplying (4.49) by (n + 1) and (4.50) by n and adding, we get

(n + 1)(1 − x2)P
′
n(x) + n(1 − x2)P

′
n(x) = n(n + 1)Pn−1(x) − n(n + 1)Pn+1(x)

⇒ (2n + 1)(1 − x2)P
′
n(x) = n(n + 1)(Pn−1(x) − Pn+1(x))

⇒ (2n + 1)(x2 − 1)P
′
n(x) = n(n + 1)(Pn+1(x) − Pn−1(x)).

Example 4.8 Prove that

1 + h

h
√

(1 − 2xh + h2)
− 1

h
=

∞∑

n=0

(Pn + Pn+1)hn

Solution: From generating function of Legendre polynomial, we get
∞∑

n=0

hnPn(x) = (1 − 2xh + h2)−
1
2

L.H.S of the required result

Now
1 + h

h
√

(1 − 2xh + h2)
− 1

h
=

1
h

(1 − 2xh + h2)−
1
2 + (1 − 2xh + h2)−

1
2 − 1

h

=
1
h

∞∑

n=0

hnPn +

∞∑

n=0

hnPn − 1
h

(4.51)
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Now
∞∑

n=0

hnPn(x) = P0 + hP1 + h2P2 + · · · + hnPn + hn+1Pn+1 + · · ·

= 1 + h(P1 + hP2 + · · · + hnPn+1 + · · · ) = 1 + h
∞∑

n=0

hnPn+1 (4.52)

Using (4.51) and (4.52), we get
∞∑

n=0

hnPn =
1
h

[
1 + h

∑
hnPn+1

]
+

∞∑

n=0

hnPn − 1
h

=

∞∑

n=0

hnPn+1 +

∞∑

n=0

hnPn =

∞∑

n=0

(
Pn + Pn+1

)
hn.

Example 4.9 Prove that
P′n+1(x) + P′n(x) = P0(x) + 3P1(x) + 5P2(x) + 7P3(x) + · · · + (2n + 1)Pn(x)

Solution: From recurrence relation III, we get

(2n + 1)Pn(x) = P
′
n+1(x) − P

′
n−1(x) (4.53)

Replacing n by 1, 2, · · · , (n − 1),n successively in (4.53) we get

3P1(x) = P
′
2(x) − P

′
0(x)

5P2(x) = P
′
3(x) − P

′
1(x)

7P3(x) = P
′
4(x) − P

′
2(x)

· · · · · · · · ·
(2n − 1)Pn−1(x) = P

′
n(x) − P

′
n−2(x)

(2n + 1)Pn(x) = P
′
n+1(x) − P

′
n−1(x)

Adding these and noting that in the sum of right hand sides all the terms cancel except the first
two of the second column and the last two of the first column, we get

3P1(x) + 5P2(x) + 7P3(x) + · · · + (2n + 1)Pn(x) = −P′0(x) − P′1(x) + P′n(x) + P′n+1(x)

Now since P0(x) = 1 and P1(x) = x, so P′0 = 0 and P′1(x) = 1, we get

P0(x) + 3P1(x) + 5P2(x) + 7P3(x) + · · · + (2n + 1)Pn(x) = P′n(x) + P′n+1(x)

Example 4.10 Prove that

1 + 1
2 P1(cosθ) + 1

3 P2(cosθ) + · · · = log
[

(1+sin θ
2 )

sin θ
2

]

Solution: From generating function, we get

(1 − 2xh + h2)−
1
2 =

∞∑

n=0

hnPn(x), |x| ≤ 1, |h| < 1

Integrating with respect to ′h′ from 0 to 1, we get

1∫

0

(1 − 2xh + h2)−
1
2 dh =

1∫

0

∞∑

n=0

hnPn(x)dh, (4.54)
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Replacing x by cosθ on both sides, (4.54) reduces to

1∫

0

(1 − 2 cosθh + h2)−
1
2 dh =

∞∑

n=0

Pn(cosθ)

1∫

0

hndh

⇒
1∫

0

1√
[(h − cosθ)2 + sin2 θ]

dh =

∞∑

n=0

Pn(cosθ)
[ hn+1

n + 1

]1

0

⇒
∞∑

n=0

[Pn(cosθ)
n + 1

]
=

[
log{(h − cosθ) +

√
[(h − cosθ)2 + sin2 θ]}

]1

0

⇒
∞∑

n=0

[Pn(cosθ)
n + 1

]
= log

{
(1 − cosθ) +

√
[(1 − cosθ)2 + sin2 θ]

}
− log(1 − cosθ)

⇒
∞∑

n=0

[Pn(cosθ)
n + 1

]
= log

{
(1 − cosθ) +

√
[2(1 − cosθ)]

}
− log(1 − cosθ)

⇒
∞∑

n=0

[Pn(cosθ)
n + 1

]
= log

{(1 − cosθ) +
√

[2(1 − cosθ)]}
(1 − cosθ)

⇒
∞∑

n=0

[Pn(cosθ)
n + 1

]
= log

{
√

(1 − cosθ)
√

(1 − cosθ) +
√

[2(1 − cosθ)]}√
(1 − cosθ)

√
(1 − cosθ)

⇒
∞∑

n=0

[Pn(cosθ)
n + 1

]
= log

√
(1 − cosθ) +

√
2√

(1 − cosθ)

⇒
∞∑

n=0

[Pn(cosθ)
n + 1

]
= log

√
2 sin2 θ

2 +
√

2
√

2 sin2 θ
2

⇒
∞∑

n=0

[Pn(cosθ)
n + 1

]
= log

1 + sin θ
2

sin θ
2

⇒ P0(cosθ) +
1
2

P1(cosθ) +
1
3

P2(cosθ) + · · · = log
1 + sin θ

2

sin θ
2

⇒ 1 +
1
2

P1(cosθ) +
1
3

P2(cosθ) + · · · = log
1 + sin θ

2

sin θ
2

Example 4.11 Find the value of
1∫
−1

P0(x)dx where Pn(x) is Legendre’s polynomial of degree n.

Solution: We know that P0(x) = 1. So
1∫
−1

P0(x)dx =
1∫
−1

dx = 2.

Example 4.12 Express x3 + x2 in terms of Legendre polynomials P0(x),P1(x),P2(x),P3(x).
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Solution: We know that

P0(x) =
1
0!

x0 = 1 (4.55)

P1(x) = x (4.56)

P2(x) =
1
2

(3x2 − 1)⇒ x2 =
2
3

P2(x) +
1
3

(4.57)

P3(x) =
1
2

(5x3 − 3x)⇒ x3 =
2
5

P3(x) +
3
5

x (4.58)

Now using (4.57) and (4.58), x3 + x2 reduces to

x3 + x2 =
2
5

P3(x) +
3
5

+
2
3

P2(x) +
1
3

=
2
5

P3(x) +
2
3

P2(x) +
3
5

x +
1
3

=
2
5

P3(x) +
2
3

P2(x) +
3
5

P1(x) +
1
3

P0(x), Since P1(x) = x and P0(x) = 1.

Example 4.13 Express x4 + 2x3 + 2x2 − x − 3 in terms of Legendre polynomials.

Solution: We know that

P0(x) =
1
0!

x0 = 1 (4.59)

P1(x) = x (4.60)

P2(x) =
1
2

(3x2 − 1)⇒ x2 =
2
3

P2(x) +
1
3
. (4.61)

P3(x) =
1
2

(5x3 − 3x)⇒ x3 =
2
5

P3(x) +
3
5

x (4.62)

P4(x) =
1
8

(35x4 − 30x2 + 3)⇒ x4 =
8
35

P4(x) +
6
7

x2 − 3
35

(4.63)

Now using (4.63) and (4.62) x4 + 2x3 + 2x2 − x − 3 reduces to

x4 + 2x3 + 2x2 − x − 3 =
8

35
P4(x) +

6
7

x2 − 3
35

+ 2
{2

5
P3(x) +

3
5

x
}

+ 2x2 − x − 3

=
8

35
P4(x) +

4
5

P3(x) +
20
7

x2 +
1
5

x − 108
35

=
8

35
P4(x) +

4
5

P3(x) − 20
7

{2
3

P2(x) +
1
3

}
+

1
5

P1(x) − 108
35
, [By (4.61)]

=
8
35

P4(x) +
4
5

P3(x) +
40
21

P2(x) +
1
5

P1(x) − 224
105

, [∵ P1(x) = x]

=
8
35

P4(x) +
4
5

P3(x) +
40
21

P2(x) +
1
5

P1(x) − 224
105

P0(x), [∵ P0(x) = 1]

Example 4.14 Show that all the roots of Pn(x) = 0 are real and lie between -1 and 1.

Solution: We get Rodrigue’s formula

Pn(x) =
1

2nn!
dn

dxn

{
(x2 − 1)n

}
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Now, (x2 − 1)n = (x − 1)n(x + 1)n. Since (x2 − 1)n vanishes n times at x = 1 and n times at x = −1,
therefore, using the theory of equations dn

dxn (x2 − 1)n = 0 will get n roots all lying between -1 and
1. Therefore Pn(x) = 0 has n real roots all lying between -1 and 1.

Example 4.15 Express x4 − 3x2 + x in terms of Legendre polynomials
P0(x),P1(x),P2(x),P3(x),P4(x).

Solution: We know that

P0(x) =
1
0!

x0 = 1 (4.64)

P1(x) = x (4.65)

P2(x) =
1
2

(3x2 − 1)⇒ x2 =
2
3

P2(x) +
1
3
. (4.66)

P3(x) =
1
2

(5x3 − 3x)⇒ x3 =
2
5

P3(x) +
3
5

x (4.67)

P4(x) =
1
8

(35x4 − 30x2 + 3)⇒ x4 =
8
35

P4(x) +
6
7

x2 − 3
35

(4.68)

Now using (4.68) x4 − 3x2 + x reduces to

x4 − 3x2 + x =
8
35

P4(x) +
6
7

x2 − 3
35
− 3x2 + x

=
8

35
P4(x) − 15

7
x2 − 3

35
+ x

=
8
35

P4(x) − 15
7

{2
3

P2(x) +
1
3

}
− 3

35
+ x, [Using (4.66)]

=
8
35

P4(x) − 10
7

P2(x) − 5
7
− 3

35
+ P1(x), [Since P1(x) = x]

=
8

35
P4(x) − 10

7
P2(x) + P1(x) − 4

5
P0(x), [Since P0(x) = 1]

Example 4.16 Express 4x3 + 6x2 + 7x + 2 in terms of Legendre polynomials.

Solution: We know that

P0(x) =
1
0!

x0 = 1 (4.69)

P1(x) = x (4.70)

P2(x) =
1
2

(3x2 − 1)⇒ x2 =
2
3

P2(x) +
1
3

(4.71)

P3(x) =
1
2

(5x3 − 3x)⇒ x3 =
2
5

P3(x) +
3
5

x (4.72)

Now using (4.72) 4x3 + 6x2 + 7x + 2 reduces to

4x3 + 6x2 + 7x + 2 = 4{2
5

P3(x) +
3
5

x} + 6x2 + 7x + 2 =
8
5

P3(x) + 6x2 +
12
5

x + 7x + 2

=
8
5

P3(x) + 6{2
3

P2(x) +
1
3
} + 12

5
x + 7x + 2, [Using (4.71)]

=
8
5

P3(x) + 4P2(x) +
47
5

P1(x) + 4, [Since P1(x) = x]

=
8
5

P3(x) + 4P2(x) +
47
5

P1(x) + 4P0(x), [Since P0(x) = 1]
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Example 4.17 Evaluate
1∫
−1

P2
3(x)dx.

Solution: Since
1∫
−1

P2
n(x)dx = 2

2n+1 , so
1∫
−1

P2
3(x)dx = 2

2×3+1 = 2
7 .

Example 4.18 Evaluate
1∫
−1

P0(x)dx.

Solution: Since P0(x) = 1 so,
1∫
−1

P0(x)dx =
1∫
−1

dx = 2.

4.8 Multiple Choice Questions(MCQ)

1. Let Pn(x) be the Legedre polynomial of degree n and I =
∫ 1

−1 xkPn(x)dx, where k is the
non-negative integer. Consider the following statements P and Q : GATE(MA)-2016
(P) : I = 0 if k < n.
(Q) : I = 0 if n − k is an odd integer.
which of the following statements hold TRUE?
(A) both P and Q (B) only P (C) only Q (D) Neither P nor Q.
Ans. (A).

Hint. We have xk =
k∑

m=0
CmPm(x) where Cm are real constants. Also

∫ 1

−1 Pm(x)Pn(x)dx = 0 if

m , n. Hence the result.
2. Let the Legedre equation

(1 − x2)y
′′ − 2xy

′
+ n(n + 1)y = 0

have n-th degree polynomial solution yn(x) such that yn(1) = 3. If
∫ 1

−1(y2
n(x) + y2

n−1(x))dx =
144
15 , then n is GATE(MA)-12

A) 1 B) 2 C) 3 D) 4.
Ans. B)

3. Let Pn(x) be the Legendre polynomial of degree n such that Pn(1) = 1, n = 1, 2, · · · if
∫ 1

−1

( n∑
j=1

√
j(2 j + 1)P j(x)

)2

dx = 20, then n = GATE(MA)-09

A) 2 B) 3 C) 4 D) 5.
Ans. C)
Hint.

∫ 1

−1(Pn(x))2dx = 2
2n+1

4. Let Pn(x) be the Legendre polynomial of degree n and let

Pm+1(0) = − m
m + 1

Pm−1(0), m = 1, 2, . . .

If Pn(0) = − 5
16 , then

∫ 1

−1 P2
n(x)dx = GATE(MA)-07

A) 2
13 B) 2

9 C) 5
16 D) 2

5 .
Ans. A)
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Hint. P1(0) = 0, P2(0) = − 1
2 P0(0) = − 1

2 , P3(0) = − 2
3 P1(0) = 0, · · · ,P6(0) = − 5

16∫ 1

−1 P2
n(x)dx = 2

2n+1 = 2
13

5. The weight function of Legendre polynomial is
(a) W(x) = 1 (b) W(x) = x (c) W(x) = 1 − x (d) none of these.
Ans. (a) W(x) = 1

6. Let Pn(x) denote the Legendre polynomial of degree n. If

f (x) =


x, −1 ≤ x ≤ 0
0, 0 ≤ x ≤ 1

and f (x) = a0P0(x) + a1P1(x) + a2P2(x) + . . . then GATE(MA)-05

A) a0 = − 1
4 , a1 = − 1

2 B) a0 = − 1
4 , a1 = 1

2
C) a0 = 1

2 , a1 = − 1
4 D) a0 = − 1

2 , a1 = − 1
4 .

Ans. B)

Hint. f (x) =
∞∑

r=0
arPr(x), ar = (r + 1

2 )
∫ 1

−1 f (x)Pr(x)dx

7. Let Pn(x) be the Legendre polynomial of degree n ≤ 0. If 1 + x10 =
10∑

n=0
CnPn(x), then C5 is

GATE(MA)-04

A) 0 B) 2
11 C) 1 D) 11

2 .
Ans. A)
Hint. As equating the co-efficient of x5.

8. Let y = φ(x) and y = ψ(x) be solutions of

y
′′ − 2xy

′
+ (sin x2)y = 0

such that φ(0) = 1 φ
′
(0) = 1, ψ(0) = 1, ψ

′
(0) = 2. Then the value of W(φ,ψ) at x = 1 is

GATE(MA)-04

A) 0 B) 1 C) e D) e2.
Ans. C)

9. Lety be the polynomial solution of the differential equation

(1 − x2)y
′′ − 2xy

′
+ 6y = 0

If y(1) = 2, then the value of the integral
∫ 1

−1 y2(x)dx is GATE(MA)-11
A) 1

5 B) 2
5 C) 4

5 D) 8
5 .

Ans. D)
Hint. I = y(1)2 2

2n+1

10. The interval of x of Legendre polynomial is
(a) [−1, 1] (b) (−1, 1) (c) [0, 1] (d) [−1, 1)
Ans. (a) [−1, 1].
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11. The Legendre polynomial Pn(x) is
(a) even if n is even (b) odd if n is even (c) even if n is odd (d) none of these.
Ans. (a) even if n is even.

4.9 Review Exercise

1 Show that infinity is a regular singular point for the Legendre equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0,

where α is constant.
1. The Laguerre polynomial

Ln(x) = ex d(xne−x)
dxn

is a solution of the Laguerre equation.
2. The Laguerre polynomials Ln are orthogonal with respect to the weight function w(x) = e−x,

in the sense that
∫ +∞

0
e−xLm(x)Ln(x)dx =

{
0 if m , n
1 if m = n.

3. Prove that (i)P′n(−1) = (−1)n 1
2 n(n + 1)

(ii)
1∫
−1

(P′n)2dx = n(n + 1).

4. Prove that
1∫
−1

xPn(x)P′n(x)dx = 2n
2n+1 .

5. prove that P′n(x) − P′n−1(x) = (2n − 1)Pn−1.
6. Express 2 − 3x + 4x2 in terms of Legendre polynomial.
7. Show that x3 = 2

5 P3(x) + 3
5 P2(x).

8. Prove that
π∫

0
Pn(cosθ)cosnθdθ =

1.3.5···(2n−1)
2.4.6···(2n) π.

9. Prove that (2n + 1)(x2 − 1)P′n(x) = n(n + 1)(Pn+1(x) − Pn−1(x)).
10. Prove that P′n+1 + P′n = P0 + 3P1 + · · · + (2n + 1)Pn.
11. Using Rodrigue’s formula, prove that P′n+1 − P′n−1 = (2n + 1)Pn.

12. Let P be any polynomial of degree n and let

P = c0P0 + c1P1 + · · · + cnPn,

where c0, c1, · · · , cn are constants. Show that ck = 2k+1
2

1∫
−1

P(x)Pk(x)dx, (k = 0, 1, 2, · · · ,n).

13. Prove that P1(x) = 1
π

π∫
0
{x +

√
x2 − 1cosθ}.
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14. Express P(x) = x4 + 2x3 + 2x2 − x − 3 in terms of legendre polynomials.
[Ans. 8/35P4(x) + 4/5P3(x) + 40/21P2(x) + 1/5P1(x) − 224/105P0(x)].

15. Prove that all the roots of pn(x) are distinct.
16. Show that all the roots of Pn(x) are real and lie between -1 and 1.
17. Using Rodrigue’s formula find the value of P0(x), P1(x), P2(x) and P3(x).

18. Show that
1∫
−1

xnPn(x)dx =
2n+1(n!)2

(2n+1)! .

19. Show that
1∫
−1

x4P6(x)dx = 0.

20. Prove that
π∫

0
Pn(cosθ) cos nθdθ = B(n + 1

2 ,
1
2 ).

21. When n is a positive integer prove that Pn(x) = 1
π

π∫
0

[x ±
√

x2 − 1 cosφ]ndφ.

22. Using Rodrigues formula to prove that P′n+1 − P′n−1 = (2n + 1)Pn.
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Chapter 5

Bessel Functions
5.1 Introduction
Another special type of differential equation is discussed in this chapter which is called Bessel
equation. These are named after the German mathematician and astronomer Friedrich Bessel,
who first used them to analyze planetary orbits which will discussed later. Bessel functions
occur in many other physical problems, usually in a cylindrical geometry, wave propagation
and static potentials. Some examples of these are presented at the end of this chapter.
5.2 Bessel Equation
The differential equation of the form

x2y
′′

+ xy
′
+ (x2 − n2)y = 0 (5.1)

is called Bessel equation of order n, n being a non negative constant. Comparing the equation
(5.1) with the equation (3.1), we get p1(x) = 1

x and p0(x) = x2−n2

x2 . Obviously, x = 0 is a singular
point. Note that lim

x→0
xp1(x) = 1 and lim

x→0
x2p0(x) = −n2. So, both xp1(x) and x2p0(x) are analytic at

x = 0 and can be expanded as power series that are convergent for |x| < ∞. Hence, x = 0 is a
regular singular point. To investigate the point at x = ∞, we transfer the independent variable
x by x = 1

t , then dy
dx = −t2 dy

dt ,
d2 y
dt2 = t4 d2 y

dt2 + 2t3 dy
dt and subsequently, the equation (5.1) becomes

t4 d2y
dt2 + t3 dy

dt
+ (1 − n2t2)y = 0 (5.2)

This shows that the equation (5.2) has a singular point at t = 0 which is not regular singular
point as lim

t→0
t2p0(t) = lim

t→0

t2(1−n2t2)
t4 does not exist and hence x = ∞ is not a regular singular point

of the equation (5.1).
To obtain a series solution of the above differential equation (5.1) in the neighborhood of

x = 0 by Frobenius method, let us put

y =

∞∑

m=0

amxm+r, a0 , 0, 0 < x < ∞ (5.3)

Differentiating twice (5.3) in a succession, we get

y
′
=

∞∑

m=0

(m + r)amxm+r−1 and y
′′

=

∞∑

m=0

(m + r)(m + r − 1)amxm+r−2
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Putting these values y, y′ and y′′ in (5.1) we get

x2
∞∑

m=0

(m + r)(m + r − 1)amxm+r−2 + x
∞∑

n=0

(m + r)amxm+r−1 + (x2 − n2)
∞∑

m=0

amxm+r = 0

⇒
∞∑

m=0

(m + r)(m + r − 1)amxm+r +

∞∑

m=0

(m + r)amxm+r +

∞∑

m=0

amxm+r+2 − n2
∞∑

m=0

amxm+r = 0

⇒
∞∑

m=0

{(m + r)(m + r − 1) + (m + r) − n2}amxm+r +

∞∑

m=0

amxm+r+2 = 0

Equating to zero the coefficient of smallest power of x, namely xr, the indicial equation is

a0{r(r − 1) + r − n2} = 0, i.e. r2 − n2 = 0 as a0 , 0

So the roots of the indicial equation are r = −n and n. Next equating to zero the coefficient of
xk+r from above equation, we obtain the recurrence relation as

(k + r + n)(k + r − n)ak + ak−2 = 0⇒ ak = − ak−2

(k + r + n)(k + r − n)
, k = 2, 3, 4, · · · (5.4)

Next equating to zero the coefficient of xr+1 and get

a1(r + n + 1)(r + 1 − n) = 0⇒ a1 = 0 (for r = −n and r = n). (5.5)

Using a1 = 0 and (5.4), we get a1 = a3 = a5 = a7 = · · · = 0. Putting n = 2, 4, 6, · · · in (5.4) we get

a2 = − a0

(r + n + 2)(r + 2 − n)
,

a4 = − a2

(r + n + 4)(r + 4 − n)
=

a0

(r + n + 4)(r + 4 − n)(r + n + 2)(r + 2 − n)

and so on. Putting these values in (5.3), we get

y(x) = a0

[
xr − xr+2

(r + n + 2)(r + 2 − n)
+

xr+4

(r + n + 4)(r + 4 − n)(r + n + 2)(r + 2 − n)
+ · · ·

]
(5.6)

Putting r = n and replacing a0 by a in (5.6), we get

(y)r=n = axn
[
1 − x2

4(1+n) + x4

4.8(1+n)(2+n) − · · ·
]

If a = 1
2nΓ(n+1) , then the solution is

Jn(x) =
1

2nΓ(n + 1)
xn

[
1 − x2

4(1 + n)
+

x4

4.8(1 + n)(2 + n)
− · · ·

]
=

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(x
2

)2m+n

which is called the Bessel’s function of first kind of order n. Putting r = −n and replacing a0 by
b in (5.6), we get

(y)r=−n = bx−n
[
1 − x2

4(1−n) + x4

4.8(1−n)(2−n) − · · ·
]
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If b = 1
2nΓ(n+1) , then the solution is

J−n(x) =
1

2nΓ(n + 1)
x−n

[
1 − x2

4(1 − n)
+

x4

4.8(1 − n)(2 − n)
− · · ·

]
=

∞∑

m=0

(−1)m 1
m!Γ(m − n + 1)

(x
2

)2m−n

which is called the Bessel’s function of second kind of order −n. Thus the general solution of
Bessel equation (5.1) when n is not an integer is y = AJn(x)+BJ−n(x), where A and B are arbitrary
constant.

5.3 Bessel’s function of first kind of order n

The bessel’s function of first kind of order n is denoted by Jn(x) and is defined as

Jn(x) =
1

2nΓ(n + 1)
xn

[
1 − x2

4(1 + n)
+

x4

4.8(1 + n)(2 + n)
− · · ·

]

=

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(x
2

)2m+n

(5.7)

where n is a nonnegative constant. When n is a integer, Γ(n + r + 1) = (n + r)! and so (5.7) may
be written as

Jn(x) =

∞∑

m=0

(−1)m 1
m!(n + m)!

(x
2

)2m+n

5.4 Properties of Bessel’s function

Theorem 5.1 Show that for any integer n, J−n(x) = (−1)nJn(x) and Jn(x) is Bessel function of
first kind.

Proof: Case-I: When n is a positive integer
From the Bessel’s function of first kind, we have

Jn(x) =

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(
x
2

)2m+n

Now replacing n by −n in the above expression, we have

J−n(x) =

∞∑

m=0

(−1)m 1
m!Γ(−n + m + 1)

(x
2

)2m−n

(5.8)

since n > 0, so Γ(−n + m + 1) is infinite and so 1
Γ(−n+m+1) is zero for m = 0, 1, 2, · · · (n− 1). Keeping

this in mind we see that the sum over the m in (5.8) must be taken from n to∞. Thus we obtain

J−n(x) =
∞∑

m=n
(−1)m 1

m!Γ(−n+m+1)

(
x
2

)2m−n
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Taking r = m − n, we get

J−n(x) =

∞∑

r=0

(−1)r+n 1
(r + n)!Γ(r + 1)

(x
2

)2(r+n)−n

=

∞∑

r=0

(−1)r(−1)n 1
r!Γ(r + n + 1)

(x
2

)2r+n

= (−1)n
∞∑

r=0

(−1)r 1
r!Γ(r + n + 1)

(x
2

)2r+n

= (−1)n Jn(x)

Case-II: When n is a negative integer
Let p be a positive integer such that n = −p. Since p > 0, from case-I, we have J−p(x) =

(−1)pJp(x) ⇒ Jp(x) = (−1)−pJ−p(x). But p = −n hence above result becomes J−n(x) = (−1)n Jn(x).
Hence for any integer n, J−n(x) = (−1)nJn(x).

Theorem 5.2 Show that for any integer n, Jn(−x) = (−1)nJn(x).

Proof:Case-I: When n is a positive integer

From the Bessel’s function of first kind, we have Jn(x) =
∞∑

m=0
(−1)m 1

m!Γ(n+m+1)

(
x
2

)2m+n

.

Now replacing x by −x in the above expression, we have

Jn(−x) =

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(−x
2

)2m+n

=

∞∑

m=0

(−1)m(−1)2m+n 1
m!Γ(n + m + 1)

(x
2

)2m+n

= (−1)n
∞∑

m=0

(−1)m 1
m!Γ(m + n + 1)

(x
2

)2m+n

= (−1)n Jn(x)

Case-II: When n is a negative integer
Let p be a positive integer such that n = −p. Since p > 0, from case-I of theorem 5.1, we have

Jn(x) = J−p(x) = (−1)pJp(x) [Since J−n(x) = (−1)n Jn(x)]

Now replacing x by −x, we have

Jn(−x) = (−1)pJp(−x) = (−1)2pJp(x), [ Since Jn(−x) = (−1)n Jn(x) for any positive integer n]

= Jp(x) = (−1)−pJ−p(x) = (−1)n Jn(x), [Since J−n(x) = (−1)nJn(x)⇒ Jn(x) = (−1)−nJ−n(x) ]

Hence for any integer, n, Jn(−x) = (−1)nJn(x).

Theorem 5.3 (Recurrence Relation I) Prove that

d
dx

{
xnJn(x)

}
= xn Jn−1(x) or xJ

′
n(x) = −nJn(x) + xJn−1(x)

Solution: From the Bessel’s function of first kind, we have

Jn(x) =

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(x
2

)2m+n

⇒ xnJn(x) =

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(1
2

)2m+n

x2m+2n
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Differentiating with respect to x both side we get

d
dx
{xn Jn(x)} =

d
dx

{ ∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(1
2

)2m+n

x2m+2n
}

=

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(1
2

)2m+n d
dx

x2m+2n

=

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(2m + 2n)
(1

2

)2m+n

x2m+2n−1

= xn
∞∑

m=0

(−1)m 1
Γ(m + 1)Γ(n + m + 1)

2(m + n)
(1

2

)2m+n

xn−1+2m

= xn
∞∑

m=0

(−1)m 1
m!Γ(n + m)

(1
2

)n−1+2m

xn−1+2m

= xn
∞∑

m=0

(−1)m 1
m!Γ{(n − 1) + m + 1}

(x
2

)n−1+2m

= xnJn−1(x).

Hence
d

dx
{xnJn(x)} = xnJn−1(x) ⇒ xnJ

′
n(x) + nxn−1 Jn(x) = xnJn−1(x) ⇒ xJ

′
n(x) = −nJn(x) + xJn−1(x).

Theorem 5.4 (Recurrence Relation II) Prove that

d
dx
{x−nJn(x)} = −x−nJn+1(x) or xJ

′
n(x) = nJn(x) − xJn+1(x)

Solution: From the Bessel’s function of first kind, we have

Jn(x) =

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(x
2

)2m+n

⇒ x−nJn(x) =

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(1
2

)2m+n

x2m

Differentiating with respect to x both side we get,

d
dx
{x−nJn(x)} = d

dx
{
∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(1
2

)2m+n

x2m}

=

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(1
2

)2m+n d
dx

x2m =

∞∑

m=0

(−1)m 1
m!Γ(n + m + 1)

(1
2

)2m+n

2mx2m−1

= x−n
∞∑

m=1

(−1)m 1
Γ(m)Γ(n + m + 1)

(1
2

)2m+n−1

xn+2m−1 [Since Γ(m) = ∞when m = 0]
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= x−n
∞∑

m=1

(−1)m x{(n+1)+2(m−1)}

Γ{(m − 1) + 1}Γ{(n + 1) + (m − 1) + 1)}
(1

2

)n−1+2m

= x−n
∞∑

r=0

(−1)r+1 1
Γ(r + 1)Γ{(n + 1) + r + 1}

(x
2

){n−1+2(r+1)}
, [Replacing r = m − 1]

= −x−n
∞∑

r=0

(−1)r 1
r!Γ{(n + 1) + r + 1}

(x
2

)(n+1+2r)

= −x−nJn+1(x).

Hence
d

dx
{x−n Jn(x)} = −x−nJn+1(x)

⇒ x−nJ
′
n(x) − nx−n−1Jn(x) = −x−nJn+1(x) ⇒ xJ

′
n(x) = nJn(x) − xJn+1(x).

Theorem 5.5 (Recurrence Relation III:) Prove that

2J
′
n(x) = Jn−1(x) − Jn+1(x), where Jn(x) is the Bessel’s function of first kind.

Proof: From recurrence relations I and II, we have

xJ
′
n(x) = −nJn(x) + xJn−1(x) (5.9)

and xJ
′
n(x) = nJn(x) − xJn+1(x) (5.10)

Adding (5.9) and (5.10), we get

2xJ
′
n(x) = xJn−1(x) − xJn+1(x) ⇒ 2J

′
n(x) = Jn−1(x) − Jn+1(x)

Theorem 5.6 (Recurrence Relation IV:)Prove that

2nJn(x) = x
[
Jn−1(x) + Jn+1(x)

]
, where Jn(x) is the Bessel’s function of first kind.

Proof: From recurrence relations I and II, we have

xJ
′
n(x) = −nJn(x) + xJn−1(x) (5.11)

and xJ
′
n(x) = nJn(x) − xJn+1(x) (5.12)

Subtracting (5.12) from (5.11), we get

2nJn(x) − xJn+1(x) − xJn−1(x) = 0 ⇒ 2nJn(x) = x[Jn−1(x) + Jn+1(x)].

5.5 Generating Function for the Bessel’s function Jn(x)

Example 5.1 Show that when n is a positive integer, Jn(x) is the coefficient of zn in the expan-

sion of exp
{

x
2 (z − 1

z )
}
, i.e exp{ x2 (z − 1

z )} =
∞∑

n=−∞
znJn(x)
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Solution: We have exp
{

x
2 (z − 1

z )
}

= e
xz
2 − x

2z = e
xz
2 e−

x
2z

Now, exp
{x

2
(z − 1

z
)
}

= e
xz
2 − x

2z = e
xz
2 e−

x
2z

=
[
1 +

(x
2

)
z +

(x
2

)2 z2

2!
+ · · · +

(x
2

)n zn

n!
+

(x
2

)n+1 z(n+1)

(n + 1)!
+ · · ·

]

×
[
1 −

(x
2

)
z−1 +

(x
2

)2 z−2

2!
+ · · · +

(x
2

)n (−1)nz−n

n!

+
(x

2

)n+1 (−1)n+1z−(n+1)

(n + 1)!
+ · · ·

]
(5.13)

Now the coefficient of zn in the product of (5.13) is obtained by multiplying coefficients of
zn, zn+1, zn+2, · · · in the first brackets with coefficients of z0, z−1, z−2, · · · in the second bracket
respectively and in thus

=
(x

2

)n 1
n!
−

(x
2

)n+2 1
(n + 1)!

+
(x

2

)n+4

− · · ·

=

∞∑

m=0

(−1)m

m!(n + m)!

(x
2

)n+2m

=

∞∑

m=0

(−1)m

m!Γ(n + m + 1)

(x
2

)n+2m [
Since (n + m)! = Γ(n + m + 1), n + m being positive integer

]

= Jn(x)

Example 5.2 Prove that the following recursion relation for Bessel’s function using generating
function

2nJn(x) = x[Jn−1(x) + Jn+1(x)]

Solution: From generating function of Bessel’s function we have

exp{ 12 x(z − 1
z )} =

∞∑
n=−∞

znJn(x).

Differentiating with respect to ′z′ both side, we get

exp
{1

2
x(z − 1

z
)
}x

2

(
1 +

1
z2

)
=

∞∑

n=−∞
nzn−1Jn(x)

⇒ x
2

(
1 +

1
z2

) ∞∑

n=−∞
znJn(x) =

∞∑

n=−∞
nzn−1 Jn(x)

⇒ x
2

∞∑

n=−∞
znJn(x) +

x
2

∞∑

n=−∞
zn−2Jn(x) =

∞∑

n=−∞
nzn−1 Jn(x)

Equating the coefficient of zn−1 both side we get

x
2

Jn−1(x) +
x
2

Jn+1(x) = nJn(x) ⇒ 2nJn(x) = x[Jn−1(x) + Jn+1(x)].
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Example 5.3 Prove that the following recursion relation for Bessel,s function using generating
function

2J′n(x) = Jn−1(x) − Jn+1(x)

Solution: From the generating function of Bessel’s function we know that

exp{ 12 x(z − 1
z )} =

∞∑
n=−∞

zn Jn(x)

Differentiating with respect to ′x′ both side, we get

exp
{1

2
x(z − 1

z
)
}1

2
(z − 1

z
) =

∞∑

n=−∞
znJ

′
n(x)

⇒ 1
2

(z − 1
z

)
∞∑

n=−∞
znJn(x) =

∞∑

n=−∞
znJ

′
n(x)

⇒ 1
2

∞∑

n=−∞
zn+1 Jn(x) − 1

2

∞∑

n=−∞
zn−1Jn(x) =

∞∑

n=−∞
znJ

′
n(x)

Equating the coefficient of zn both side we get

1
2

Jn−1(x) − 1
2

Jn+1(x) = J
′
n(x) ⇒ 2J

′
n(x) = Jn−1(x) − Jn+1(x)

5.6 Worked out Examples

Example 5.4 Express J5(x) in terms of J0(x) and J1(x).

Solution: From the recurrence relation-III, we have

Jn+1(x) = 2n
x Jn(x) − Jn−1(x)

Putting n = 4, 3, 2, 1 we get

J5(x) =
8
x

J4(x) − J3(x), J4(x) =
6
x

J3(x) − J2(x)

J3(x) =
4
x

J2(x) − J1(x) and J2(x) =
2
x

J1(x) − J0(x).

Now J5(x) =
8
x

J4(x) − J3(x) =
8
x

(6
x

J3(x) − J2(x)
)
− J3(x) =

48
x2 J3(x) − 8

x
J2(x) − J3(x)

=
(48

x2 − 1
)
J3(x) − 8

x
J2(x) =

(48
x2 − 1

)(4
x

J2(x) − J1(x)
)
− 8

x
J2(x)

=
(192

x3 −
4
x

)
J2(x) −

(48
x2 − 1

)
J1(x) − 8

x
J2(x) =

(192
x3 −

12
x

)
J2(x) −

(48
x2 − 1

)
J1(x)

=
(192

x3 −
12
x

)(2
x

J1(x) − J0(x)
)
−

(48
x2 − 1

)
J1(x) =

(192
x3 −

12
x

)2
x

J1(x) −
(192

x3 −
12
x

)
J0(x)

−
(48

x2 − 1
)
J1(x) =

(384
x4 −

72
x2 + 1

)
J1(x) −

(192
x3 −

12
x

)
J0(x)
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Example 5.5 Show that

(a) J− 1
2
(x) =

√
2
πx

cos x (b) J 1
2
(x) =

√
2
πx

sin x (c) {J− 1
2
(x)}2 + {J 1

2
(x)}2 =

2
πx

Proof: From the Bessel’s function of first kind, we have

Jn(x) =
1

2nΓ(n + 1)
xn

[
1 − x2

4(1 + n)
+

x4

4.8(1 + n)(2 + n)
− · · ·

]

⇒ Jn(x) =
1

2nΓ(n + 1)
xn

[
1 − x2

2(2 + 2n)
+

x4

2.4(2 + 2n)(4 + 2n)
− · · ·

]
(5.14)

(a) Putting n = − 1
2 in (5.14), we have

J− 1
2
(x) =

1

2−
1
2 Γ(− 1

2 + 1)
x−

1
2

[
1 − x2

2.1
+

x4

2.4.3.1
− · · ·

]

=
1

2−
1
2 Γ( 1

2 )
x−

1
2

[
1 − x2

2!
+

x4

4!
− · · ·

]
=

√
2
πx

[
1 − x2

2!
+

x4

4!
− · · ·

]
[ as Γ( 1

2 ) =
√
π]

=

√
2
πx

cos x

(b) Putting n = 1
2 in (5.14), we have

J 1
2
(x) =

1

2
1
2 Γ( 1

2 + 1)
x

1
2

[
1 − x2

1.2.3
+

x4

1.2.4.3.5
− · · ·

]

=
1

2
1
2 Γ( 3

2 )
x

1
2

[
1 − x2

3!
+

x4

5!
− · · ·

]
=

1

2
1
2 1

2 Γ( 1
2 )

x
1
2

[
1 − x2

3!
+

x4

5!
− · · ·

]
[ as Γ(n + 1) = nΓ(n)]

=

√
2
πx

[
x − x3

3!
+

x5

5!
− · · ·

]
=

√
2
πx

sin x, [ as Γ( 1
2 ) =

√
π].

(c) Squaring and adding (a) and (b), we have {J− 1
2
(x)}2 + {J 1

2
(x)}2 = 2

πx .

Example 5.6 Prove that (a) J− 3
2
(x) =

√
2
πx (− cos x

x − sin x) (b)J 3
2
(x) =

√
2
πx ( sin x

x − cos x).

Solution: From example 5.5, we have

J− 1
2
(x) =

√
2
πx

cosx (5.15)

and J 1
2
(x) =

√
2
πx

sinx (5.16)

Also from recurrence relation IV, we have

Jn−1(x) + Jn+1(x) =
2n
x

Jn(x) (5.17)
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(a) Putting n = − 1
2 in (5.17), we get

J− 3
2
(x) + J 1

2
(x) = −1

x
J− 1

2
(x) ⇒ J− 3

2
(x) = −J 1

2
(x) − 1

x
J− 1

2
(x)

=

√
2
πx

(−cos x
x
− sin x) [Using (5.15) and (5.16)]

(b)Putting n = 1
2 in (5.17), we get

J− 1
2
(x) + J 3

2
(x) =

1
x

J 1
2
(x)

⇒ J 3
2
(x) = −J− 1

2
(x) +

1
x

J 1
2
(x)

=

√
2
πx

(−sin x
x
− cos x) [Using (5.15) and (5.16)]

Example 5.7 Show that
(i) cos x = J0(x) − 2J1(x) + 2J4(x) − · · ·

(ii) sin x = 2J1(x) − 2J3(x) + 2J5(x) − · · ·
Solution: From generating function of Bessel’s function, we have

exp
{x

2
(z − 1

z
)
}

=

∞∑

n=−∞
zn Jn(x)

= · · · + z−3 J−3(x) + z−2J−2(x) + z−1 J−1(x) + J0(x) + z1 J1(x) + z2 J2(x) + z3 J3(x) + · · ·
= J0(x) + (z − 1

z
)J1(x) + (z2 +

1
z2 )J2(x) + (z3 − 1

z3 )J3(x) + · · · [Using J−n(x) = (−1)nJn(x)]

Putting z = eiθ, we have

exp
{x

2
(eiθ − e−iθ)

}
= J0(x) + (eiθ − e−iθ)J1(x) + (e2iθ + e−2iθ)J2(x) + (e3iθ − e−3iθ)J3(x) + · · ·

⇒ eix sinθ = J0(x) + (2i sinθ)J1(x) + (2 cos 2θ)J2 + (2i sin 3θ)J3(x) + · · ·
⇒ cos(x sinθ) + i sin(x sinθ) = (J0 + 2 cos 2θJ2 + 2 cos 4θJ4 + · · · )
+ i(2 sinθJ1 + 2 sin 3θJ3 + · · · )

Equating the real and imaginary parts, we have

cos(x sinθ) = J0 + 2 cos 2θJ2 + 2 cos 4θJ4 + · · · )
sin(x sinθ) = 2 sinθJ1 + 2 sin 3θJ3 + · · ·

Putting θ = π
2 , we have

cos x = J0(x) − 2J1(x) + 2J4(x) − · · ·
sin x = 2J1(x) − 2J3(x) + 2J5(x) − · · ·

Example 5.8 Show that
x∫

0
x−nJn+1(x)dx = 1

2nΓ(n+1) − x−nJn(x), n > 1.

Solution: From recurrence relation II, we have
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d
dx {x−nJn(x)} = −x−n Jn+1(x)

Integrating both sides with respect to ′x′ between the limits 0 and x, we get

[
x−nJn(x)

]x

0
= −

x∫

0

x−nJn+1(x)dx

⇒ x−nJn(x) − lim
x→0

Jn(x)
xn = −

x∫

0

x−nJn+1(x)dx

But lim
x→0

Jn(x)
xn = 1

xn
xn

2nΓ(n+1)

[
1 − x2

4(1+n) + · · ·
]

= 1
2nΓ(n+1)

Hence
x∫

0
x−nJn+1(x)dx = 1

2nΓ(n+1) − x−n Jn(x), n > 1.

Example 5.9 Express J3(x) in terms of J0(x) and J1(x).

Solution: From the recurrence relation, we have

Jn+1(x) = 2n
x Jn(x) − Jn−1(x)

Putting n = 2, 1 we get

J3(x) =
4
x

J2(x) − J1(x) and J2(x) =
2
x

J1(x) − J0(x).

Now J3(x) =
4
x

J2(x) − J1(x) =
4
x

(2
x

J1(x) − J0(x)
)
− J1(x)

=
8
x2 J1(x) − J1(x) − 4

x
J0(x) =

( 8
x2 − 1

)
J1(x) − 4

x
J0(x).

Example 5.10 Find the value of J1(x).

Solution: We know that

Jn(x) = 1
2nΓ(n+1) x

n[1 − x2

4(1+n) + x4

4.8(1+n)(2+n) − · · · ]
Putting n = 1, we get

J1(x) =
1

2Γ(1 + 1)
x[1 − x2

4(1 + 1)
+

x4

4.8(1 + 1)(2 + 1)
− · · · ]

J1(x) =
x
2

[1 − x2

8
+

x4

192
− · · · ]

Example 5.11 Write down the Bessel’s equation of order 2.

Solution:The differential equation of the form

x2y′′ + xy′ + (x2 − n2)y = 0

is called Bessel equation of order n. Putting n = 2, we get x2y′′ + xy′ + (x2 − 4)y = 0.

Example 5.12 Prove that Jn(−x) = (−1)nJn(x) using generating function.

Solution: We have
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exp{ x2 (z − 1
z )} =

∞∑
n=−∞

zn Jn(x)

Replacing x by −x we get

∞∑

n=−∞
znJn(−x) = exp{−x

2
(z − 1

z
)} = exp{x

2
(−z − 1

−z
)}

⇒
∞∑

n=−∞
znJn(−x) =

∞∑

n=−∞
(−z)nJn(x)

Equating the coefficients of zn from both sides, we get Jn(−x) = (−1)n Jn(x).

5.7 Multiple Choice Questions(MCQ)

1. The general solution to the differential equation

x2 d2x
dy2 + x

dy
dx

+
(
4x2 − 5

25

)
y = 0 is GATE(MA) − 2014

A) y(x) = αJ 3
5
(2x) + βJ− 3

5
(2x) B) y(x) = αJ 3

10
(x) + βJ− 3

10
(x)

C) y(x) = αJ 3
5
(x) + βJ− 3

5
(x) D) y(x) = αJ 3

10
(2x) + βJ− 3

10
(2x)

Ans. (A)

2. It is known that Bessel function Jn(x), n ≥ 0, satisfy the identity e
x
2 (t− 1

t ) = J0(x)+
∞∑

n=1
Jn(x)

(
tn +

(−1)n

tn

)
for all t > 0 , and x ∈ <. The value of J0(π3 ) + 2

∞∑
n=1

J2n(π3 ) is equal to GATE(MA)-2015

(A) 2 (B) 1 (C) 3 (D) 0
Ans. (B)

Hint. We have put t = 1, we get 1 = J0(x) + 2
∞∑

n=1
J2n(x), x ∈ <. Then replacing x by π

3 , we

obtain J0(π3 ) + 2
∞∑

n=1
J2n(π3 ) = 1.

3. If Jn(x) and Yn(x) denote Bessel functions of order n of the first and second kind, then the
general solution of the differential equation x d2x

dy2 − x dy
dx + xy = 0 is GATE(MA)-2005

A) y(x) = αxJ1(x) + βxY1(x) B) y(x) = αJ0(x) + βY0(x)
C) y(x) = αJ1(x) + βY1(x) D) y(x) = αxJ0(x) + βxY0(x)
Ans. A)

5.8 Review Exercises

1. Show that
∫ x

0 x3J0(x)dx = x3J1(x) − 2x2 J2(x) GATE(MA)-2003

2. Prove that d
dx {xJ1(x)} = xJ0(x).

3. Prove that d
dx {J0(x)} = −J1(x).
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4. Prove that J− 5
2

= ( 2
πx )

1
2 [ 3−x2

x2 cosx + 3
x sinx].

5. Prove that J 5
2

= ( 2
πx )

1
2 [ 3−x2

x2 sinx − 3
x cosx].

6. Show that

π
2∫

0

√
πxJ 1

2
(x)dx = 1.

7. Express in J3(x) terms of J0(x) and j1(x). [ Ans: J3(x) = 8−x2

x2 J1(x) − 4
x J0(x)]

8. Show that Jn(x) = 0 has no repeated roots except at x = 0.

9. Prove that
b∫

a
xJ0(ax)dx = b

a .

10. Prove that J2
0 + 2(J2

1 + J2
2 + · · · ) = 1

11. Show that all the roots of Jn(x) are real.

12. Evaluate
1∫
−1

x4J1(x)dx. [Ans : x4J2 − 2x3 J3 + c.]

13. Establish the relation 2J′n(x) = Jn−1(x) + Jn+1(x) the Bessel’s function Jn(x). Hence deduce
that

J′′n (x) = 1
4 [Jn−1(x) − 2Jn(x) + Jn+1(x)]

14. Prove that d
dx (J2

n + J2
n+1) = 2( n

x J2
n − n+1

x J2
n+1).

15. If a > 0, prove that
∞∫
0

e−ax J0(bx)dx = 1√
a2+b2

.

16. Show that
∞∫
0

x−nJn+1(x)dx = 1
2nΓ(n+1) , n > − 1

2 .

17. Prove that
∫

J0(x) sin xdx = xJ0 sin x − xJ1(x) cos x.

18. Prove that Jn+3 + Jn+5 = 2
x (n + 4)Jn+4

19. Show that x sin x = 2
(
22 J2 − 42 J4 + 62 J6 − · · ·

)
.

20. Show that x cos x = 2
(
12J1 − 32 J3 + 52 J5 − · · ·

)
.
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