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Preface

With the remarkable advancement in various branches of science, engineering and technology,
today more than ever before, the study of differential equations has become essential. For,
to have an exhaustive understanding of subjects like physics, mathematical biology, chemical
science, mechanics, fluid dynamics, heat transfer, aerodynamics, electricity, waves and electro-
magnetic, the knowledge of finding solution to differential equations is absolutely necessary.
These differential equations may be ordinary or partial. Finding and interpreting their solutions
are at the heart of applied mathematics. A thorough introduction to differential equations is
therefore a necessary part of the education of any applied mathematician, and this book is
aimed at building up skills in this area.

This book on ordinary / partial differential equations is the outcome of a series of lectures deliv-
ered by me, over several years, to the undergraduate or postgraduate students of Mathematics
at various institution. My principal objective of the book is to present the material in such a
way that would immediately make sense to a beginning student. In this respect, the book is
written to acquaint the reader in a logical order with various well-known mathematical tech-
niques in differential equations. Besides, interesting examples solving JAM / GATE / NET / IAS
/ NBHM/TIFR/SSC questions are provided in almost every chapter which strongly stimulate
and help the students for their preparation of those examinations from graduate level.

Organization of the book
The book has been organized in a logical order and the topics are discussed in a systematic
manner. It has comprising 21 chapters altogether. In the chapter ??, the fundamental con-
cept of differential equations including autonomous/ non-autonomous and linear / non-linear
differential equations has been explained. The order and degree of the ordinary differential
equations (ODEs) and partial differential equations(PDEs) are also mentioned. The chapter ??
are concerned the first order and first degree ODEs. It is also written in a progressive manner,
with the aim of developing a deeper understanding of ordinary differential equations, includ-
ing conditions for the existence and uniqueness of solutions. In chapter ?? the first order and
higher degree ODEs are illustrated with sufficient examples. The chapter ?? is concerned with
the higher order and first degree ODEs. Several methods, like method of undetermined coeffi-
cients, variation of parameters and Cauchy-Euler equations are also introduced in this chapter.
In chapter ??, second order initial value problems, boundary value problems and Eigenvalue
problems with Sturm-Liouville problems are expressed with proper examples. Simultaneous
linear differential equations are studied in chapter 1. It is also written in a progressive manner
with the aim of developing some alternative methods. In chapter ??, the equilibria, stability
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and phase plots of linear / nonlinear differential equations are also illustrated by including nu-
merical solutions and graphs produced using Mathematica version 9 in a progressive manner.
The geometric and physical application of ODEs are illustrated in chapter ??. The chapter ??
is presented the Total (Pfaffian) Differential Equations. In chapter ??, numerical solutions of
differential equations are added with proper examples. Further, I discuss Fourier transform in
chapter ??, Laplace transformation in chapter ??, Inverse Laplace transformation in chapter ??.
Moreover, series solution techniques of ODEs are presented with Frobenius method in chapter
??, Legendre function and Rodrigue formula in Chapter ??, Chebyshev functions in chapter
??, Bessel functions in chapter ?? and more special functions for Hypergeometric, Hermite and
Laguerre in chapter ?? in detail.

Besides, the partial differential equations are presented in chapter ??. In the said chapter,
the classification of linear, second order partial differential equations emphasizing the reasons
why the canonical examples of elliptic, parabolic and hyperbolic equations, namely Laplace’s
equation, the diffusion equation and the wave equation have the properties that they do has
been discussed. Chapter ?? is concerned with Green’s function. In chapter ??, the application of
differential equations are developed in a progressive manner. Also all chapters are concerned
with sufficient examples. In addition, there is also a set of exercises at the end of each chapter
to reinforce the skills of the students.

Moreover it gives the author great pleasure to inform the reader that the second edition of the
book has been improved, well -organized, enlarged and made up-to-date as per latest UGC -
CBSC syllabus. The following significant changes have been made in the second edition:

• Almost all the chapters have been rewritten in such a way that the reader will not find
any difficulty in understanding the subject matter.

• Errors , omissions and logical mistakes of the previous edition have been corrected.

• The exercises of all chapters of the previous edition have been improved, enlarged and
well-organized.

• Two new chapters like Green’s Functions and Application of Differential Equations have
been added in the present edition.

• More solved examples have been added so that the reader may gain confidence in the
techniques of solving problems.

• References to the latest papers of various university, IIT-JAM, GATE, and CSIR-UGC(NET)
have been provided in almost every chapters which strongly help the students for their
preparation of those examinations from graduate label.

In view of the above mentioned features it is expected that this new edition will appreciate and
be well prepared to use the wonderful subject of differential equations.

Aim and Scope
When mathematical modelling is used to describe physical, biological or chemical phenomena,
one of the most common results of the modelling process is a system of ordinary or partial
differential equations. Finding and interpreting the solutions of these differential equations
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is therefore a central part of applied mathematics, Physics and a thorough understanding of
differential equations is essential for any applied mathematician and physicist. The aim of this
book is to develop the required skills on the part of the reader. The book will thus appeal
to undergraduates/postgraduates in Mathematics, but would also be of use to physicists and
engineers. There are many worked examples based on interesting real-world problems. A large
selection of examples / exercises including JAM/NET/GATE questions is provided to strongly
stimulate and help the students for their preparation of those examinations from graduate level.
The coverage is broad, ranging from basic ODE , PDE to second order ODE’s including Bifurca-
tion theory, Sturm-Liouville theory, Fourier Transformation, Laplace Transformation, Green’s
function and existence and uniqueness theory, through to techniques for nonlinear differential
equations including stability methods. Therefore, it may be used in research organization or
scientific lab.

Significant features of the book

• A complete course of differential Equations

• Perfect for self-study and class room

• Useful for beginners as well as experts

• More than 650 worked out examples

• Large number of exercises

• More than 700 multiple choice questions with answers

• Suitable for New UGC-CBSC syllabus of ODE & PDE

• Suitable for GATE, NET, NBHM, TIFR, JAM, JEST, IAS, SSC examinations.
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Chapter 1

Simultaneous Linear Differential
Equations

1.1 Introduction

We have only provided the definition of system of ODEs in section ?? in chapter ??. Excepted
this, in all the previous chapters, we have discussed only those differential equations which
contain one independent variable and one dependent variable. In this chapter we shall con-
sider the linear differential equation with more than one dependent variable depending on
one independent variable. Such system of differential equation is called simultaneous linear
differential equations. Here, we discussed also the methods of solution of those differential
equations. Generally two types (Type-I and Type-II) of simultaneous equations are considered:

1.2 Simultaneous Linear Differential Equations of Type-I

1.2.1 Simultaneous Linear Differential Equations with constant coefficients
of Type-I

The system of n linear simultaneous ordinary differential equations with constant coefficients
of Type-I is the form of

φ11(D)x1 + φ12(D)x2 + · · · + φ1n(D)xn = f1(t)

φ21(D)x1 + φ22(D)x2 + · · · + φ2n(D)xn = f2(t)
...

...
...

φn1(D)x1 + φn2(D)x2 + · · · + φnn(D)xn = fn(t)

where x1, x2, · · · , xn are the dependent variables dependent on t ( independent variable) and
φi j(D), (i, j = 1, 2, · · · ,n) are all rational function of D ≡ d

dt with constant coefficients and
fi(t), (i = 1, 2, · · · ,n).
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1.2.2 Simultaneous Linear Differential Equations with variable coefficients
of Type-I

The general non-homogeneous, first order linear system with variable coefficients of n dimen-
sions is

ẋ = A(t)x + f(t),

where A(t) is an n×n matrix whose elements ai j are functions of time and x(t) = [x1(t), x2(t), · · · ,xn(t)]T

and f(t) = [ f1(t), f2(t), · · · , fn(t)]T are the column vectors of the n variables.

1.3 Simultaneous Linear Differential Equations of Type-II

Another type of linear simultaneous equations is

P1dx + Q1dy + R1dz = 0

and P2dx + Q2dy + R2dz = 0

where P1, Q1, R1, P2, Q2, R2 are functions of x, y and z.
Now by cross-multiplication, we get

dx
Q1R2 −Q2R1

=
dy

R1P2 − R2P1
=

dz
P1Q2 − P2Q1

which is of the form
dx
P

=
dy
Q

=
dz
R

where P, Q and R are functions of x, y, z.

1.4 Lipschitz (Cauchy-Lipschitz) condition

A vector-valued function f defined for (t, x) in some set D (t real, x in <n) is said to be
continuous on D. The function f satisfies a Lipschitz condition on D if there exists a constant
λ > 0 such that

||f(t, x) − f(t,y)|| ≤ λ||x − y||
for all (t, x), (t,y) in D where x = (x1, x2, · · · , xn) ∈ <n, y = (y1, y2, · · · , yn) ∈ <n. The constant
λ is known as Lipschitz constant for the corresponding function f on D.

Example 1.1 Show that f(t, x) = (3t + 2x1, x1 − x2) on S : { |t| < ∞, |x| < ∞} satisfying a
Lipschitz condition.

Proof.: Here

||f(t, x) − f(t,y)|| = ||2(x1 − y1), (x1 − y1) − (x2 − y2)||
= 2|x1 − y1| + ||(x1 − y1) − (x2 − y2)||
= 2|x1 − y1| + |x1 − y1| + |x2 − y2|
≤ 3||x − y||
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So, ||f(t, x) − f(t,y)|| ≤ λ||x − y|| with λ = 3 for (t, x) on S. Therefore, the given function f satisfy
the Lipschitz condition on S.

Theorem 1.1 Let x = (x1, x2, · · · , xn) be in <n. Also suppose f be a vector-valued function
defined for (t, x) on a set D of the form

|t − t0| ≤ a, ||x − x0|| ≤ b, (a, b > 0),

or of the form
|t − t0| ≤ a, ||x|| < ∞, (a > 0).

If ∂f(t,x)
∂xk

, (k = 1, 2, · · · ,n) exists is continuous on D and there is a constant λ > 0 such that

∣∣∣
∣∣∣∂ f (t, x)
∂xk

∣∣∣
∣∣∣ ≤ λ, (k = 1, 2, · · · ,n), ∀(t, x) in D. (1.1)

Then f satisfies a Lipschitz condition on D with Lipschitz constant λ.

Proof: Let x = (x1, x2, · · · , xn) be in<n and y = (y1, y2, · · · , yn) be in<n. Let (t, x), (t,y) be two
fixed points in D and define the vector-valued function F for real s, 0 ≤ s ≤ 1, by

F(s) = f(t,y + s(x − y)), (0 ≤ s ≤ 1).

This is a well-defined function since the points (t,y + s(x − y)) are in D for 0 ≤ s ≤ 1. Clearly
|t − t0| ≤ a, and if ||x − x0|| ≤ b, ||y − y0|| ≤ b, then

||y + s(x − y) − x0|| = ||(1 − s)(y − x0) + s(x − x0)||
≤ (1 − s)||y − x0|| + s||x − x0||
≤ (1 − s)b + sb = b.

If ||x|| < ∞, ||y|| < ∞, then

||y + s(x − y)|| ≤ (1 − s)||y|| + s||x|| ≤ ||x|| + ||y|| < ∞.

We now have

F′(s) = (x1 − y1)
∂f
∂x1

(t,y + s(x − y)) + · · · + (xn − yn)
∂f
∂xn

(t,y + s(x − y)),

so that

||F′(s)|| ≤ ||(x1 − y1)||| ∂f
∂x1

(t,y + s(x − y))|| + · · · + ||(xn − yn)|||| ∂f
∂xn

(t,y + s(x − y))||.

Then using (1.1), we have that

F′(s) ≤ λ||x − y||, (0 ≤ s ≤ 1).

Thus, since

||f(t, x) − f(t,y)|| = ||F(1) − F(0)|| = ||
1∫

0

F′(s)ds|| ≤
1∫

0

||F′(s)||ds ≤ λ||x − y||.
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So we have,

||f(t, x) − f(t,y)|| ≤ λ||x − y||,

which is the theorem.

Example 1.2 Show that f(t, x) = (3t + 2x1, x1 − x2) on S : { |t| < ∞, ||x|| < ∞} satisfying a
Lipschitz condition.

Proof.: Here

∂f(t, x)
∂x1

= (2, 1),
∂f(t, x)
∂x2

= (0,−1)

and hence

||∂f(t, x)
∂x1

|| = 3, ||∂f(t, x)
∂x2

|| = 1.

Using the Theorem 1.1, we have f satisfies a Lipschitz condition on S with a Lipschitz constant
λ = 3.

Example 1.3 Consider the system of two equations

dxi

dt
=

n∑

j=1

ai jx j + gi(t), i = 1, 2, · · · ,n,

where ai j, (i, j = 1, 2, · · · ,n) are constants and gi, i = 1, 2, · · · ,n are continuous in <. If the
system is written in the form

dx
dt

= f(t, x),

then show that the f satisfies a Lipschitz condition for all (t, x) where t is real and x is in<n.

Proof.: Here f(t, x) = ( f1(t, x), f2(t, x), · · · , fn(t, x)) with fi(t, x) =
n∑

j=1
ai jx j + gi(t), i = 1, 2, · · · ,n.

Therefore,

∂f(t, x)
∂xi

= (a1i, a2i, · · · , ani)

and hence

||∂f(t, x)
∂xi

|| =
n∑

j=1

|a ji|.

Using the Theorem 1.1, we have f satisfies a Lipschitz condition for all (t, x) where t is real and
x is in<n.
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Theorem 1.2 (Local Existence and Uniqueness )
Let f be a continuous vector-valued function defined on

R : |t − t0| ≤ a, ||x − x0|| ≤ b, (a, b > 0),

and suppose f satisfies a Lipschitz condition on R. If M be a positive constant such that

||f(t, x)|| ≤M

for all (t, x) in R, the successive approximations {φk}, (k = 0, 1, 2, · · · ), given by

φ0(t) = x0, φk+1(t) = x0 +

t∫

t0

f(t, φk(x))dt, (k = 0, 1, 2, · · · )

converge on the interval

I :
{
|t − t0| ≤ α = minimum{a, b

M
}
}

to a unique solution φ of the initial value problem

dx
dt

= f(t, x), x(t0) = x0,

on I.

Proof.: The proof is the same as that of Theorems ?? & ?? of Chapter ?? with x, y, f , φ replaced
everywhere by t, x, f, φ.

Theorem 1.3 (Non-local Existence)
Let f be a continuous vector-valued function defined on

S : |t − t0| ≤ a, ||x|| < ∞, (a > 0),

and satisfy there a Lipschitz condition.Then the successive approximations {φk}, (k =

0, 1, 2, · · · ) given by

φ0(t) = x0, φk+1(t) = x0 +

t∫

t0

f(t, φk(x))dt, (k = 0, 1, 2, · · · )

for the initial value problem

dx
dt

= f(t, x), x(t0) = x0, (||x0|| < ∞),

exist on |t − t0| ≤ a and converge there to a solution Φ of the problem.

Proof.: The proofs carry over directly from those for Theorem ?? of Chapter ?? with x, y, f , Φ

replaced everywhere by t, x, f, φ.
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Theorem 1.4 (Corollary of Non-local Existence)
Let f be a continuous vector-valued function defined on

S : |t| < ∞, ||x|| < ∞,

and satisfies a Lipschitz condition on each ”strip”

|t| ≤ a, ||x|| < ∞, (a > 0).

Then every initial value problem

dx
dt

= f(t, x), x(t0) = x0,

has a solution which exists for all real x.

Proof.: The proofs carry over directly from those for Theorem ?? of Chapter ??.

Theorem 1.5 Consider a linear system

x′ = f(t, x), x ∈ <n

where the components f1, f2, · · · , fn of f are given by

f j(t, x) =

n∑

k=1

a jk(t)xk + b j(t), ( j = 1, 2, · · · ,n), (1.2)

and the functions a jk, b j are continuous on an interval [a, b] containing t0. If x0 is any vector
in<n there exists one and only one solution φ of the problem

x′ = f(t, x), x(t0) = x0

on [a, b].

Proof.: Here a jk, b j are continuous on an interval [a, b] containing t0, so a jk, b j are bounded on
the said interval [a, b] containing t0. Therefore, there exist a positive constant λ such that

n∑

j=1

|a jk(t)| ≤ λ, (k = 1, 2, · · · ,n),

for all t satisfying a ≤ t ≤ b containing t0. Then from (1.60), we see that

|| ∂f
∂xk

(t, x)|| = ||(a1k(t), a2k(t), · · · , ank(t))|| =
n∑

j=1

|a jk(t)| ≤ λ, (k = 1, 2, · · · ,n).

Hence by Theorem 1.1, f satisfying a Lipschitz condition on the strip

S : a ≤ t ≤ b containing t0 , ||x|| < ∞

with Lipschitz constant λ. Then by Theorems 1.3 & 1.2, we have the said Theorem 1.5.
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1.5 Linear higher order differential equations

Consider the equation

dnx(t)
dtn + P1(t)

dn−1x(t)
dtn−1 + P2(t)

dn−2x(t)
dtn−2 + · · · + Pn(t)x(t) = G(t), on [a, b] (1.3)

Subject to the n initial conditions x(t0) = α1,
dx(t0)

dt
= α2, · · · , dn−1x(t0)

dtn−1 = αn (1.4)

where P1,P2, · · ·Pn and G are continuous functions on [a, b].

Theorem 1.6 Let P1,P2, · · · ,Pn,G be continuous real valued functions on an interval [a, b]
containing a point t0. If α1, α2, · · · , αn are any n constants, there exists one and only one
solution φ of the equation (1.3) on [a, b] satisfying (1.4).

Proof.: Let x0 = (α1, α2, · · · , αn). Also the differential equation (1.3) with initial conditions (1.4)
can also be written in the first order system

dx1(t)
dt

= x2(t), where x1(t) = x(t) (1.5)

dx2(t)
dt

= x3(t) (1.6)

...
...

... (1.7)
dxn−1(t)

dt
= xn(t) (1.8)

dxn(t)
dt

= −Pn(t)x1(t) − Pn−1(t)x2(t) − · · · − P1(t)xn(t) + G(t) (1.9)

Subject to the n initial conditions

x1(t0) = α1, x2(t0) = α2, · · · , xn(t0) = αn (1.10)

According to Theorem 1.5, there is a unique solution Φ = (φ1, φ2, · · · , φn) of this system on [a, b]
satisfying

φ1(t0) = α1, φ2(t0) = α2, · · · , φn(t0) = αn.

But since
φ2 = φ

′
1, φ3 = φ

′
2 = φ

′′
1 , · · · , φn = φ(n−1)

1 ,

the function φ1 is the required solution on [a, b].

Note∗: The Theorem 1.6 includes Theorem ?? of Chapter ??.
Note∗∗: In other words the problem of solving the initial value problem for the higher order
equation (1.3) with initial condition (1.4) is equivalent to solving the initial value problem for
the first order system (1.5)-(1.9) with initial condition (1.10).

Example 1.4 Find the first order simultaneous differential equations of the third order differ-
ential equation

d3x
dt3 − 6

d2x
dt2 + 12

dx
dt
− 8x = 18e2t

with initial conditions x(0) = c1,
dx(0)

dt = c2,
d2x(0)

dt2 = c3
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Solution: Write as the equivalent first order system

dx
dt

= y,
d2x
dt2 =

dy
dt

= z,
d3x
dt3 =

dz
dt

= 8x − 12y + 6z + 18e2t

or ,
dx
dt

= 0 · x + 1 · y + 0 · z, dy
dt

= 0 · x + 0 · y + 1 · z, dz
dt

= 8x − 12y + 6z + 18e2t

or ,



dx
dt
dy
dt
dz
dt

 =


0 1 0
0 0 1
8 −12 6




x
y
z

 +


0
0

18e2t



with initial conditions 
x(0)
y(0)
z(0)

 =


c1
c2
c2

 .

Theorem 1.7 There exists a set of n linearly independent solutions of ẋ(t) = A(t)x(t).

Proof. The given differential equations is a system of n first order linear ordinary differential
equations. We know that the n− th order ordinary differential equation is equivalent to a system
of n first order ordinary differential equations. By using the Theorem ??, we have, the n − th
order ordinary differential equation has n linearly independent solutions. So the equivalent
system of n first order ordinary differential equations has also a set of n linearly independent
solutions.

Theorem 1.8 Let Φ1(t),Φ2(t), · · · ,Φn(t) be any set of linearly independent vector solutions of
the homogeneous linear system of differential equation ẋ(t) = A(t)x(t) on [a, b]. Then every
solution is a linear combination of these solutions i.e Φ(t) = c1φ1(t) + c2φ2(t) + · · · + cnφn(t) is
also a solution of this homogenous linear differential equation on [a, b] where c1, c2, · · · , cn are
n arbitrary constants.

Proof. The given differential equations is a system of n first order linear ordinary differential
equations. We know that the n− th order ordinary differential equation is equivalent to a system
of n first order ordinary differential equations. Then the proof is entirely similar to the proof of
Theorem ??.

Definition 1.1 (Fundamental matrix) Let Φ1(t),Φ2(t), · · · ,Φn(t) be n linearly independent
solutions of the homogeneous system ẋ = A(t)x on [a, b]. Then the matrix Φ(t) =

[
φ1(t), φ2(t), · · · , φn(t)

]
=



φ11(t) φ12(t) · · · φ1n(t)
φ21(t) φ22(t) · · · φ2n(t)
...

...
...

φn1(t) φn2(t) · · · φnn(t)


is called a fundamental matrix of

the homogenous system.

Theorem 1.9 Given any n×n solution matrix Φ(t) =
[
φ1(t), φ2(t), · · · , φn(t)

]
of the homogenous

system ẋ = A(t)x on [a, b], then either (i) for all t ∈ [a, b], det{Φ(t)} = 0, or (ii) for all t ∈ [a, b],
det{Φ(t)} , 0. Case (i) occurs if and only if the solutions are linearly dependent, and case (ii)
implies that Φ(t) is a fundamental matrix.
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Proof. The given differential equations is a system of n first order linear ordinary differential
equations. We know that the n− th order ordinary differential equation is equivalent to a system
of n first order ordinary differential equations. Then the proof is entirely similar to the proof of
Theorems -?? & -??.
Theorem 1.10 (Abel Formula: ) Let A(t) be continuous on I and φ ∈ Mn(K) be such that
φ′(t) = A(t)φ(t) on I. Then detφ satisfies on I the differential equation (detφ)′ = (trA)(detφ),
or in integral form for t, τ ∈ I,

detφ(t) = detφ(τ) exp
( t∫

τ

trA(s)ds
)

(1.11)

Proof.: Writing the differential equation φ′(t) = A(t)φ(t) in terms of the elements ϕi j and ai j of
respectively φ and A,

ϕ′i j(t) =

n∑

k=1

aik(t)ϕkj(t), i, j = 1, 2, 3, · · · n. (1.12)

Writing detφ =

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ11(t) ϕ12(t) · · · ϕ1n(t)
ϕ21(t) ϕ22(t) · · · ϕ2n(t)
...

...
...

...
ϕn1(t) ϕn2(t) · · · ϕnn(t)

∣∣∣∣∣∣∣∣∣∣∣∣
. Then we see that

(detφ)′ =

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ′11(t) ϕ′12(t) · · · ϕ′1n(t)
ϕ21(t) ϕ22(t) · · · ϕ2n(t)
...

...
...

...
ϕn1(t) ϕn2(t) · · · ϕnn(t)

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ11(t) ϕ12(t) · · · ϕ1n(t)
ϕ′21(t) ϕ′22(t) · · · ϕ′2n(t)
...

...
...

...
ϕn1(t) ϕn2(t) · · · ϕnn(t)

∣∣∣∣∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ11(t) ϕ12(t) · · · ϕ1n(t)
ϕ21(t) ϕ22(t) · · · ϕ2n(t)
...

...
...

...
ϕ′n1(t) ϕ′n2(t) · · · ϕ′nn(t)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Indeed, write detφ(t) = Γ
(
r1, r2, · · · , rn

)
, where ri is the i − th row in φ(t). Γ is then a linear

function of each of its arguments, if all other rows are constant which implies that

d
dt

detφ(t) = Γ
( d
dt

r1, r2, · · · , rn

)
+ Γ

(
r1,

d
dt

r2, · · · , rn

)
+ · · · + Γ

(
r1, r2, · · · , d

dt
rn

)

Using (1.12) on the first of the n determinants in (detφ)′ gives

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
k

a1kϕk1(t)
∑
k

a1kϕk2(t) · · · ∑
k

a1kϕkn(t)

ϕ21(t) ϕ22(t) · · · ϕ2n(t)
...

...
...

...
ϕn1(t) ϕn2(t) · · · ϕnn(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣

. Adding −a12 times the second row, −a13 times the first row, etc., −a1n times the n − th row, to
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the first row, does not change the determinant and thus

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
k

a1kϕk1(t)
∑
k

a1kϕk2(t) · · · ∑
k

a1kϕkn(t)

ϕ21(t) ϕ22(t) · · · ϕ2n(t)
...

...
...

...
ϕn1(t) ϕn2(t) · · · ϕnn(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

a11ϕ11(t) a11ϕ12(t) · · · a11ϕ1n(t)
ϕ21(t) ϕ22(t) · · · ϕ2n(t)
...

...
...

...
ϕn1(t) ϕn2(t) · · · ϕnn(t)

∣∣∣∣∣∣∣∣∣∣∣∣
= a11 detφ.

Repeating this for each of the terms in (detφ)′, we obtain (detφ)′ = (a11 + a22 + · · · + ann) detφ,

giving finally (detφ)′ = (trA)(detφ). Integrating we get detφ(t) = detφ(τ) exp
( t∫
τ

trA(s)ds
)

Theorem 1.11 (Wronskians of Solutions: ) Let x1(t) = [x11(t), x12(t), · · · , x1n(t)]T, x2(t) =

[x21(t), x22(t), · · · , x2n(t)]T · · · xn(t) = [xn1(t), xn2(t), · · · , xnn(t)]T be n solutions of the homoge-
neous linear equation ẋ = P(t)x on an interval I. Suppose also that p(t) is continuous on I. Let

W(t) = W(x1, x2, · · · , xn) =



x11(t) x12(t) · · · x1n(t)
x21(t) x22(t) · · · x2n(t)
...

...
...

...
xn1(t) xn2(t) · · · xnn(t)


. Then :

(i) If x1, x2, · · · , xn are linearly dependent on I, then W = 0 at every point of I.
(ii) If x1, x2, · · · , xn are linearly independent on I, then W , 0 at every point of I.
Thus there are only two possibilities for solutions of homogeneous systems : Either W = 0 at
every point of I or W = 0 at no point of I.

Example 1.5 Verify that the set of solution x1(t) =


2et

2et

et

, x2(t) =


2e3t

0
−e3t

 and x3(t) =


2e5t

−2e5t

e5t



are independent solution of the equation dx
dt =


3 −2 0
−1 3 −2
0 −1 3

 x

Solution: The Wronskian of these solution is W(t) =


2et 2e3t 2e5t

2et 0 −2e5t

et −e3t e5t

 = −16e9t which never

zero. Hence by Theorem-1.11, we have the set of solution is linearly independent on any
interval.
Theorem 1.12 The system of n linear simultaneous linear ordinary differential equations is
the form of

ẋ(t) = A(t)x(t) + f(t) (1.13)

Subject to the x(t0) = x0. (1.14)

Suppose the coefficients A(t) = [ai j(t)]n×n, (i, j = 1, 2, · · · ,n) and the functions f(t) = [ f1(t), f2(t),
· · · , fn(t)]T, (i = 1, 2, · · · ,n) are continuous on the interval [t − a, t + a] containing t0. Then
the problem (1.13) with (1.14) has a unique solution (x1(t), x2(t), · · · , xn(t)) in [t − a, t + a]
containing t0.

Proof. The system of n linear ordinary differential equations ẋ(t) = A(t)x(t)+f(t) always satisfied
the Lipschitz condition (Please see the Example 1.3) on [t − a, t + a] containing t0. Then the
proof is entirely same as the Theorem 1.2, if we put f(t, x) = A(t)x(t) on [t − a, t + a] containing
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t0.

Theorem 1.13 The solution of the homogenous system ẋ = A(t)x with initial conditions
x(t0) = x0 is given by x(t) = Φ(t)Φ−1(t0)x0 where Φ(t) is any fundamental matrix of the system.

Proof. The solution must be of the form

x(t) = Φ(t)a (1.15)

where a is a constant vector. The initial conditions gives x0 = Φ(t0)a. The columns of Φ(t0) are
linearly independent by Theorem 1.9, so Φ(t0) has an inverse Φ−1(t0). Therefore a = Φ−1(t0)x0.
then from equation (1.15), we have x(t) = Φ(t)Φ−1(t0)x0

Theorem 1.14 Let xp(t) be any one particular solution of ẋ(t) = A(t)x(t) + f(t). Then every
solution of this equation is of the form x(t) = xp(t) + Φc(t), where Φc(t) is a complementary
function i.e φc(t) is the solution of ẋ(t) = A(t)x(t) and conversely.

Note: If A(t) = A, i.e ai j(t) = [ai j], (i, j = 1, 2, · · · , n) then all above theorems are also valid.

1.6 The Method of Operator

Let us consider the simultaneous linear differential equation with constant coefficients of type-I
for two variables be

Φ1(D)x + Φ2(D)y = f (t) (1.16)

ψ1(D)x + ψ2(D)y = g(t) (1.17)

where x, y are the dependent variable dependent on t (independent variable) and Φ1(D),Φ2(D),
ψ1(D) and ψ2(D) are all rational function of D ≡ d

dt with constant coefficients and f and g are
functions of t. We have to find out the value of x and y in terms of t. Given below we have
discussed operator method to solve (1.16) and (1.17).
In this section, the method of D-operator is employed to obtain the complementary and partic-
ular solutions of systems of linear ordinary differential equations of type-I. To eliminate y, we
operate both side of (1.16) with ψ2(D) and both side of (1.17) with Φ2(D). Then (1.16) and (1.17)
transforming to

ψ2(D)Φ1(D)x + ψ2(D)Φ2(D)y = ψ2(D) f (t) (1.18)

Φ2(D)ψ1(D)x + Φ2(D)ψ2(D)y = Φ2(D)g(t) (1.19)

Subtracting (1.19) from (1.18), we get

{
ψ2(D)Φ1(D) −Φ2(D)ψ1(D)

}
x = ψ2(D) f (t) −Φ2(D)g(t) (1.20)

which is a linear equation in x and can be to find x as a function of t. Value of y can be obtained
as a function of t by substituting the value of x in (1.16) or (1.17). Note that the number of
arbitrary constants in the complete solution of (1.16) will be equal to order of the differential
equation obtained in (1.20).
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Example 1.6 Solve dx
dt − 7x + y = 0, dy

dt − 2x − 5y = 0.

Solution: Writing D for d
dt , the equations are

(D − 7)x + y = 0 (1.21)

and (D − 5)y − 2x = 0 (1.22)

Putting the value of y = −(D − 7)x in (1.22), we get

−(D − 5)(D − 7)x − 2x = 0

⇒ −(D2 − 12D + 35)x − 2x = 0

⇒ (D2 − 12D + 35 + 2)x = 0

⇒ (D2 − 12D + 37)x = 0 (1.23)

Let x = emt (m being a constant) be the trial solution of the equation (1.23). The auxiliary
equation of the differential equation (1.23) is

m2 − 12m + 37 = 0

⇒ m = 6 ± i

The general solution of the equation (1.23) is

x = e6t(A cos t + B sin t), where A and B are arbitrary constants.

Putting these value of x in (1.21), we get

y = −(D − 7)x

= −(D − 7)(e6t(A cos t + B sin t))

= −6e6t(A cos t + B sin t) − e6t(−A sin t + B cos t) + 7e6t(A cos t + B sin t)

= e6t
[
(A − B) cos t + (A + B) sin t

]
.

Therefore the solution of the given simultaneous linear equation is given by

y = e6t
[
(A − B) cos t + (A + B) sin t

]
.

and x = e6t(A cos t + B sin t),

where A and B are arbitrary constants.

Example 1.7 Solve dx
dt + 4x + 3y = t, dy

dt + 2x + 5y = et.

Solution: The given equations are

dx
dt

+ 4x + 3y = t (1.24)

dy
dt

+ 2x + 5y = et (1.25)
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Putting the value of y = 1
3 (t − dx

dt − 4x) from (1.24) in (1.25), we get

1
3

d
dt

(
t − dx

dt
− 4x

)
+ 2x +

5
3

(t − dx
dt
− 4x) = et

⇒ 1
3

(1 − d2x
dt2 − 4

dx
dt

) + 2x +
5
3

(t − dx
dt
− 4x) = et

⇒ d2x
dt2 + 9

dx
dt

+ 14x = 1 + 5t − 3et

⇒ (D2 + 9D + 14)x = 1 + 5t − 3et (1.26)

Let y(x) = emt (m being a constant) be a trial solution of the corresponding homogenous
differential equation of (1.26). Then its auxiliary equation is

m2 + 9m + 14 = 0

⇒ m = −7,−2

The complementary function(C.F) of the equation (1.26) is

C.F = Ae−7t + Be−2t, where A and B are arbitrary constants.

The particular integral of (1.26) is

P.I =
1

D2 + 9D + 14
(1 + 5t − 3et)

=
1

D2 + 9D + 14
+ 5

1
D2 + 9D + 14

t − 3
1

D2 + 9D + 14
et

=
1

14
+

5
14

(1 +
9D + D2

14
)−1t − 3

12 + 9 · 1 + 14
et

=
1

14
+

5
14

(1 − 9D
14
− · · · )t − 3

24
et

=
5t
14
− et

8
− 31

196
.

Therefore the general solution of the equation (1.26) is

x(t) = Ae−7t + Be−2t +
5t
14
− et

8
− 31

196
.

Putting the said value of x in (1.24), we get

y =
1
3

(t − dx
dt
− 4x)

=
1
3

(
t − d

dt

(
Ae−7t + Be−2t +

5t
14
− et

8
− 31

196

)
− 4

(
Ae−7t + Be−2t +

5t
14
− et

8
− 31

196

))

= Ae−7t − 2
3

Be−2t +
5et

24
− t

7
+

9
98

Example 1.8 Solve dx
dt + y = et,

dy
dt − x = e−t
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Solution: Writing D for d
dt , the equations are

Dx + y = et (1.27)

and Dy − x = e−t (1.28)

Differentiating (1.27) both sides with respect to t, we get

D2x + Dy = et

⇒ D2x + (x + e−t) = et form (1.28).

⇒ D2x + x = et − e−t (1.29)

Let y(x) = emt (m being a constant) be a trial solution of the corresponding homogenous
differential equation of (1.29). Then its auxiliary equation is

m2 + 1 = 0

⇒ m = ±i

The complementary function of the equation (1.29) is

C.F = A cos t + B sin t, where A and B are arbitrary constants.

The particular integral of (1.29) is

P.I =
1

D2 + 1
(et − e−t)

=
1

D2 + 1
et − 1

D2 + 1
e−t

=
et

2
− e−t

2
.

Therefore the general solution of the equation (1.29) is

x = A cos t + B sin t +
et

2
− e−t

2

Putting the said value of x in (1.27), we get

y = et −D
(
A cos t + B sin t +

et

2
− e−t

2

)

= et − d
dt

(
A cos t + B sin t +

et

2
− e−t

2

)

= et −
(
− A sin t + B cos t +

et

2
+

e−t

2

)

= A sin t − B cos t +
et

2
− e−t

2
.

Therefore the solution of the given simultaneous linear equation is given by

x = A cos t + B sin t +
et

2
− e−t

2

and y = A sin t − B cos t +
et

2
− e−t

2
.
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Example 1.9 Solve: t2 d2x
dt2 + t dx

dt + 2y = 0, t2 d2 y
dt2 + t dy

dt − 2x = 0, t > 0

Solution : Let t = ez so that z = log t and let θ ≡ d
dz ≡ t d

dt . Then t2 d2

dt2 ≡ θ(θ − 1). Then the given
equations become

(
θ(θ − 1) + θ

)
x + 2y = 0, ⇒ θ2x + 2y = 0 (1.30)

(
θ(θ − 1) + θ

)
y − 2x = 0, ⇒ θ2y − 2x = 0 (1.31)

Eliminating y from (1.30) and (1.31), we get

(θ4 + 4)x = 0. (1.32)

The general solution of (1.32) is

x(t) = ez(c1 cos z + c2 sin z) + e−z(c3 cos z + c4 sin z) (1.33)

where c1, c2, c3, c4 are arbitrary constants.
Now, θ2x = 2ez(c2 cos z − c1 sin z) + 2e−z(c3 sin z − c4 cos z). Using this value, we have

y = ez(c1 sin z − c2 cos z) + e−z(c4 cos z − c3 sin z) (1.34)

By replacing x = et in (1.33) and (1.34), we get the required solution as

x(t) = c1t cos(log t) + c2t sin(log t) + c3t−1 cos(log t) + c4t−1 sin(log t), t > 0

y(t) = c1t sin(log t) − c2t cos(log t) + c4t−1 cos(log t) − c3t−1 sin(log t), t > 0

Example 1.10 The equation of motion of a particle are given by dx
dt + wy = 0, dy

dt −wx = 0. Find
the path of the particle and show that it is a circle. Gate(MA): 2017; VU(CBCS): 2018

Solution: Writing D for d
dt , the equations are

Dx + wy = 0 (1.35)

and −wx + Dy = 0 (1.36)

Differentiating (1.35) both sides with respect to t, we get

D2x + wDy = 0

⇒ D2x + w(wx) = 0, (form (1.36)).

⇒ D2x + w2x = 0

⇒ x = A cos wt + B sin wt. (1.37)

Putting these value of x in (1.35), we get

wy = −Dx =
d
dt

(A cos wt + B sin wt)

⇒ wy = −Aw sin wt + Bw cos wt

⇒ y = B cos wt − A sin wt (1.38)
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Squaring (1.37) and (1.38) and then adding, we get

x2 + y2 = A2 + B2

⇒ x2 + y2 = R2, [where R2 = A2 + B2].

which is a circle.
In general, the system of n linear ordinary differential equations is the form of

φ11(D)x1 + φ12(D)x2 + · · · + φ1n(D)xn = f1(t)

φ21(D)x1 + φ22(D)x2 + · · · + φ2n(D)xn = f2(t) (1.39)
...

...
...

φn1(D)x1 + φn2(D)x2 + · · · + φnn(D)xn = fn(t)

where x1, x2, · · · , xn are n dependent variables dependent on t (independent variable) and
φi j(D), i, j = 1, 2, · · · ,n are all rational function of D ≡ d

dt with constant coefficients and fi(t), i =

1, 2, · · · ,n.

Complementary Solutions

Let the complementary solutions of the system of linear differential equation (1.39) be x1c, x2c, · · · , xnc.
Then x1c, x2c, · · · , xnc are satisfied the homogenous differential equations of (1.39) i.e.

φ(D)x1c = 0, φ(D)x2c = 0, · · · , φ(D)xnc = 0,

where φ(D) is determinant of the coefficient matrix of the system of linear differential equation
(1.39) i.e,

φ(D) =

∣∣∣∣∣∣∣∣∣∣∣∣

φ11(D) φ12(D) · · · φ1n(D)
φ21(D) φ22(D) · · · φ2n(D)
...

...
...

...
φn1(D) φn2(D) · · · φnn(D)

∣∣∣∣∣∣∣∣∣∣∣∣
Hence, the unknowns x1c, x2c, · · · , xnc all have the same characteristic equation φ(λ) = 0 and, as
a result, the same form of complementary solutions.
The complementary solutions of system (1.39) contain arbitrary constants, the number of which
is the degree of polynomial ofφ(D). It is likely that the complementary solutions x1c, x2c, · · · , xnc,
written using the roots of the characteristic equation φ(λ) = 0, will contain more constants. The
extra constants can be eliminated by substituting the solutions into any one of the original
equations in system (1.39).

Particular Solutions

A particular solution of the system of linear differential equation (1.39) is given by using Cramers
Rule,

xip(t) =
∆i(t)
φ(D)

, i = 1, 2, · · · ,n,
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where φ(D) is determinant of the coefficient matrix as studied in the previous section for
complementary solution, ∆i(t) is φ(D) with the ith column being replaced by the right-hand side
vector of functions, i.e.,

∆i(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

φ11(D) · · · φ1,i−1(D) f1(t) φ1,i+1(D) · · · φ1n(D)
φ21(D) · · · φ2,i−1(D) f2(t) φ2,i+1(D) · · · φ2n(D)
...

...
...

...
...

...
...

φn1(D) · · · φn,i−1(D) fn(t) φn,i+1(D) · · · φnn(D)

∣∣∣∣∣∣∣∣∣∣∣∣

Note: It should be state that, since the elements of the determinant are operators and functions,
operators must precede functions when evaluating determinants. Furthermore, since ∆i(t), i =

1, 2, · · · ,n are functions, when determining xip, φ−1(D) should precede ∆i(t).

Example 1.11 Solve dx
dt + 4x + 3y = t, dy

dt + 2x + 5y = et

Solution: Writing D for d
dt , the equations are

(D + 4)x + 3y = t (1.40)

and 2x + (D + 5)y = et (1.41)

Let the complementary solutions of the given system of linear differential equation (1.41) be
xc(t), yc(t). Then xc, yc are satisfied the homogenous differential equations of (1.40) and (1.41)
i.e.

φ(D)xc(t) = 0, φ(D)yc(t) = 0

where φ(D) is determinant of the coefficient matrix of the given system of linear differential
equations (1.40) -(1.41) i.e,

φ(D) =

∣∣∣∣∣
D + 4 3

2 D + 5

∣∣∣∣∣
Hence the unknowns xc(t), yc(t), all have the same characteristic equation φ(λ) = 0 and as a
result, the same form of complementary solutions. Now,

φ(λ) =

∣∣∣∣∣
λ + 4 3

2 λ + 5

∣∣∣∣∣ = λ2 + 9λ + 14

So, φ(λ) = 0,⇒ λ = −7, −2. Hence, they have the same complementary solutions given by
xc = Ae−7t + Be−2t and yc = Ce−7t + De−2t.
To find the particular solution of the given system of linear differential equation (1.41), we have,

∆x(t) =

∣∣∣∣∣
t 3
et D + 5

∣∣∣∣∣ = 5t + 1 − 3et,

∆y(t) =

∣∣∣∣∣
D + 4 t

2 et

∣∣∣∣∣ = 5et − 2t,

xp(t) =
∆x(t)
φ(D)

=
5t + 1 − 3et

D2 + 9D + 14
=

1
14

(1 +
9D + D2

14
)−1(5t + 1) − 3et

24
=

5t
14
− 31

196
− et

8
,

yp(t) =
∆y(t)
φ(D)

=
5et − 2t

D2 + 9D + 14
=

5et

24
− 1

14
(1 +

9D + D2

14
)−1(−2t) =

5et

24
− t

7
+

9
98
.
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The general solutions are

x(t) = xc(t) + xp(t) = Ae−7t + Be−2t +
5t
14
− 31

196
− et

8
(1.42)

y(t) = yc(t) + yp(t) = Ce−7t + De−2t +
5et

24
− t

7
+

9
98

(1.43)

Since φ(D) = 0 is a polynomial of degree 2 in D, the general solutions should contain only
two arbitrary constants. The two extra constants C, D can be eliminated by substituting the
complementary solutions xc(t), yc(t) into either the homogeneous equation of (1.40) or (1.41).
So, substituting the complementary solutions xc(t), yc(t) in (D + 4)x + 3y = 0, we get

(D + 4)(Ae−7t + Be−2t) + 3(Ce−7t + De−2t) = 0

⇒ (−3A + 3C)e−7t + (2B + 3D)e−2t = 0

⇒ C = A, D = −2
3

B.

Then the general solutions become

x(t) = xc(t) + xp(t) = Ae−7t + Be−2t +
5t
14
− 31

196
− et

8

y(t) = yc(t) + yp(t) = Ae−7t − 2
3

Be−2t +
5et

24
− t

7
+

9
98

Example 1.12 Solve dx
dt + 4x + 3y = sin t, dy

dt + 2x + 5y = et

Solution: Writing D for d
dt , the equations are

(D + 4)x + 3y = sin t (1.44)

and 2x + (D + 5)y = et (1.45)

Let the complementary solutions of the given system of linear differential equation (1.45) be
xc(t), yc(t). Then xc, yc are satisfied the homogenous differential equations of (1.44) and (1.45)
i.e.

φ(D)xc(t) = 0, φ(D)yc(t) = 0

where φ(D) is determinant of the coefficient matrix of the given system of linear differential
equations (1.44) -(1.45) i.e,

φ(D) =

∣∣∣∣∣
D + 4 3

2 D + 5

∣∣∣∣∣
Hence the unknowns xc(t), yc(t), all have the same characteristic equation φ(λ) = 0 and as a
result, the same form of complementary solutions. Now,

φ(λ) =

∣∣∣∣∣
λ + 4 3

2 λ + 5

∣∣∣∣∣ = λ2 + 9λ + 14

So, φ(λ) = 0,⇒ λ = −7, −2. Hence, they have the same complementary solutions given by
xc = Ae−7t + Be−2t and yc = Ce−7t + De−2t.
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To find the particular solution of the given system of linear differential equation (1.45), we have,

∆x(t) =

∣∣∣∣∣
sin t 3

et D + 5

∣∣∣∣∣ = cos t + 5 sin t − 3et,

∆y(t) =

∣∣∣∣∣
D + 4 sin t

2 et

∣∣∣∣∣ = 5et − 2 sin t,

xp(t) =
∆x(t)
φ(D)

=
cos t + 5 sin t − 3et

D2 + 9D + 14
=

cos t
9D + 13

+
5 sin t

9D + 13
− 3et

24

=
(9D − 13) cos t

81D2 − 169
+

(9D − 13)5 sin t
81D2 − 169

− 3et

24

=
−9 sin t − 13 cos t
−81 − 169

+
45 cos t − 65 sin t
−81 − 169

− 3et

24

=
74 sin t

250
+

32 cos t
250

− 3et

24

yp(t) =
∆y(t)
φ(D)

=
5et − 2 sin t

D2 + 9D + 14
=

5et

24
− 2 sin t

9D + 13
=

5et

24
+

18 cos t − 26 sin t
250

.

The general solutions are

x(t) = xc(t) + xp(t) = Ae−7t + Be−2t +
74 sin t

250
+

32 cos t
250

− 3et

24
(1.46)

y(t) = yc(t) + yp(t) = Ce−7t + De−2t +
5et

24
+

18 cos t
250

− 26 sin t
250

(1.47)

Since φ(D) = 0 is a polynomial of degree 2 in D, the general solutions should contain only
two arbitrary constants. The two extra constants C, D can be eliminated by substituting the
complementary solutions xc(t), yc(t) into either the homogeneous equation of (1.44) or (1.45).
So, substituting the complementary solutions xc(t), yc(t) in (D + 4)x + 3y = 0, we get

(D + 4)(Ae−7t + Be−2t) + 3(Ce−7t + De−2t) = 0

⇒ (−3A + 3C)e−7t + (2B + 3D)e−2t = 0

⇒ C = A, D = −2
3

B.

Then the general solutions become

x(t) = xc(t) + xp(t) = Ae−7t + Be−2t +
74 sin t

250
+

32 cos t
250

− 3et

24

y(t) = yc(t) + yp(t) = Ae−7t − 2
3

Be−2t +
5et

24
+

18 cos t
250

− 26 sin t
250

1.7 Matrix Method(Normal Form)

The matrix method is the most general and systematic approach, especially in dealing with
systems of higher dimensions simultaneous differential equations of type-I . However, the said
method is the most difficult to master because of the challenging concepts in eigenvalues and
eigenvectors, particularly when multiple eigenvalues are involved.
Note: The system of equations of the form dx

dt = A(t)x(t) + f (t) is called Normal form .
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1.7.1 Structure of the solutions of n− dimensional homogeneous linear sys-
tems with constant coefficients

The general homogeneous, first order linear system of n dimensions is

ẋ(t) = Ax(t) (1.48)

where A is an n × n matrix whose elements ai j are real constants and x(t) is a column vector of
the n variables.
Seek a solution of the form x(t) = eλ tv, where v is a column vector of the n variables. Substituting
into equation (1.48) yields λeλ tv = Aeλ tv. Since, eλ t , 0, one obtains

(A − λI)v = 0 (1.49)

where I is an n× n identity matrix. Equation (1.49) is a system of homogeneous linear algebraic
equations. To have nonzero solutions for v, the determinant of the coefficient matrix must be
zero, i.e.,

det(A − λI) = 0 (1.50)

which leads to the characteristic equation, a polynomial equation in λ of degree n.

Distinct Eigenvalues

The n solutions λ1, λ2, · · · , λn of the characteristic equation (1.50) are called the eigenvalues of
A. Suppose the eigenvalues λ1, λ2, · · · , λn are distinct real numbers. A nonzero solution vk of
system (1.49) with λ = λk, i.e.,

(A − λI)vk = 0, k = 1, 2, · · · ,n, (1.51)

is called an eigenvector corresponding to eigenvalue λk.
Theorem 1.15 For the system ẋ(t) = Ax(t) with A a real, constant matrix whose eigenvalues

λ1, λ2, · · · , λn are all different then x(t) =
[
v1 eλ1t, v2eλ2t, · · · , vn eλnt

]
is a fundamental matrix

where v1,v2, · · · ,vn are eigenvectors corresponding to the eigenvalues λ1, λ2, · · · , λn and the

complementary solution of the homogeneous linear system is x(t) =
[
c1v1 eλ1t + c2v2eλ2t + · · ·+

cnvn eλnt
]

where c1, c2, · · · , cn are real constants.

Proof. As the eigenvaluesλ1, λ2, · · · , λn are all distinct real numbers, then v1 eλ1t, v2eλ2t, · · · , vn eλnt

are all independent solutions. By definition of (1.1), X(t) =
[
v1 eλ1t, v2eλ2t, · · · , vn eλnt

]
is the fun-

damental matrix. It is true that the linear combination of the independent solutions is also the
solution of the linear homogenous differential equation. So, the complementary solution of the

homogeneous linear system is x(t) =
[
c1v1 eλ1t + c2v2eλ2t + · · · + cnvn eλnt

]
where c1, c2, · · · , cn are

real constants.
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Example 1.13 Find the fundamental matrix and the complementary solution of the homoge-
nous linear system of differential equations VU(CBCS):2018

dx1

dt
= 3x1 + x2 (1.52)

dx2

dt
= x1 + 3x2 (1.53)

Solution: Here

A =

(
3 1
1 3

)

So the eigenvalues of the matrix A are satisfied by the equation (3−λ)2−1 = 0 and hence λ1 = 2
, λ2 = 4 are the required two eigenvalues of A.

Let V1 =

(
v1
v2

)
be a eigenvector corresponding to the eigenvalue λ1 = 2. Then its satisfy the

equation
(

3 1
1 3

) (
v1
v2

)
= 2

(
v1
v2

)

⇒ v1 + v2 = 0

⇒ v1 = −v2

⇒ v2 = −v1 = c1 (say)

Therefore, for λ1 = 2, the corresponding eigenvector is

V1 = c1

(
−1
1

)

⇒ V1 =

(
−1
1

)
for c1 = 1

and similarly for λ2 = 4, the corresponding eigenvector is V2 =

(
1
1

)
.

As λ1 , λ2, so the fundamental matrix is

X(t) =
(

V1eλ1t V2eλ2t
)

=

( (
−1
1

)
e2t

(
1
1

)
e4t

)
=

(
−e2t e4t

e2t e4t

)
.

So the complementary solution is

X(t) =

(
x1(t)
x2(t)

)
= c1V1e2t + c2V2e4t = c1

(
−1
1

)
e2t + c2

(
1
1

)
e4t. (1.54)

Theorem 1.16 The solution of the homogenous system ẋ(t) = Ax(t) with initial conditions
x(t0) = x0 is given by x(t) = X(t)X−1(t0)x0 where X(t) is the fundamental matrix of the system.

Proof. The solution must be of the form

x(t) = X(t)c (1.55)

where c = [c1, c2, · · · , cn]T is a constant vector. The initial conditions gives x0 = X(t0)c. As X(t)
is the fundamental matrix of the system, so the columns of X(t0) are linearly independents.
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So X(t0) has an inverse X−1(t0). Therefore c = X−1(t0)x0. then from equation (1.55), we have
x(t) = X(t)X−1(t0)x0

Example 1.14 Find the fundamental matric and the solution x(t) such that x(0) = [1 6]T for
the system.

dx1

dt
= 2x1 − x2 (1.56)

dx2

dt
= −4x2 (1.57)

Solution: Here

A =

(
2 −1
0 −4

)

and the eigenvalues are λ1 = 2, λ2 = −4.
For λ1 = 2, corresponding eigenvector of A is

V1 =

(
1
0

)

and λ2 = −4, corresponding eigenvector of A is

V2 =

(
1
6

)
.

As λ1 , λ2, so the fundamental matrix is

X(t) =
(

V1eλ1t V2eλ2t
)

=

( (
1
0

)
e2t

(
1
6

)
e−4t

)
=

(
e2t e−4t

0 6e−4t

)
.

Also X(0) =

(
1 1
0 6

)
. So X−1(0) = 1

6

(
6 −1
0 1

)
.

Hence x(t) = X(t)X−1(t0)x0 =

(
e2t e−4t

0 6e−4t

)
1
6

(
6 −1
0 1

) (
1
6

)
=

(
e−4t

6e−4t

)

Complex Eigenvalues

Suppose that matrix A of the homogeneous system ẋ(t) = Ax(t) is a real matrix. If α + iβ is an
eigenvalue with the corresponding eigenvector v, then corresponding to the eigenvalues α± iβ,

x1(t) = Re(eλtv) = eαt
[
Re(v) cos βt − Im(v) sin βt

]

x2(t) = Im(eλtv) = eαt
[
Re(v) sin βt + Im(v) cos βt

]

are two linearly independent real-valued solutions, or

x(t) = A Re(eλtv) + B Im(eλtv)

Example 1.15 Find the general solution for the system

dy1

dt
= −y1 + 5y2

dy2

dt
= −4y1 − 5y2
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Solution: This equation is y′ = Ay with

A =

(
−1 5
−4 −5

)

We can find the eigenvalues, the characteristic equation is
∣∣∣∣∣
−1 − λ −5
−4 −5 − λ

∣∣∣∣∣ = λ2 + 6λ + 25 = 0

so that λ = −3 ± 4i. Next, we need the eigenvector for λ = −3 + 4i:
(

2 − 4i 5
−4 −2 − 4i

) (
v1
v2

)
=

(
(2 − 4i)v1 + 5v2
−4v1 − (2 + 4i)v2

)
=

(
0
0

)

To solve the above equations, let v1 = α1 + iβ1 and v2 = α2 + iβ2. Then equation real and
imaginary parts, we get,

2α1 + 5α2 + 4β1 = 0

−4α1 + 2β1 + 5β2 = 0

−4α1 − 2α2 + 4β2 = 0

2α2 + 2β1 + β2 = 0

Solving the above equations, we get α1 = 5, α2 = 0, β1 = −2 and β2 = 4. So,

v =

(
5
−2

)
+ i

(
0
4

)

Hence, eλtv = e−3t(cos 4t + i sin 4t)
{ (

5
−2

)
+ i

(
0
4

) }
.

Hence, the complementary solution is

y(t) = A Re(eλtv) + B Im(eλtv)

= Ae−3t
( ( 5
−2

)
cos 4t −

(
0
4

)
sin 4t

)
+ Be−3t

( ( 5
−2

)
sin 4t +

(
0
4

)
cos 4t

)

Therefore,

y1(t) = 5e−3t(A cos 4t + B sin 4t)

y2(t) = 2e−3t
[
(−A + 2B) cos 4t − (2A + B) sin 4t

]

Multiple Eigenvalues

Let us call an eigenvalue λ of a matrix A with algebraic multiplicity m complete if it has m
linearly independent associated eigenvectors. An eigenvalue λ of a matrix A with algebraic
multiplicity k is called defective if it is not complete. If λ has only k linearly independent
eigenvectors (k < m), then the number d = m− k is called the defect of defective eigenvalue λ.

Suppose matrix A of the homogeneous system ẋ(t) = Ax(t) has an eigenvalueλ of algebraic mul-
tiplicity m > 1 and a sequence of generalized eigenvectors corresponding to λ is v1, v2, · · · , vm.
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Then, corresponding to the eigenvalues λ, λ, · · · , λ(repeated m times), m linearly independent
solutions of the homogeneous system are

xi(t) = eλtvi, i = 1, 2, · · · , k; 1 ≤ k < m,

xk+1(t) = eλt(vkt + vk+1),

xk+2(t) = eλt(vk
t2

2!
+ vk+1t + vk+2),

...
...

...

xm(t) = eλt
[
vk

tm−k

(m − k)!
+ vk+1

tm−k−1

(m − k − 1)!
+ vk+2

tm−k−2

(m − k − 2)!
+ · · · + vm−2

t2

2!
+ vm−1t + vm

]
.

Example 1.16 For the above multiple eigenvalues problem, show that (A − λI)xr+1(t) =

xr(t), r = k, k + 1, · · · ,m − 1. Hence deduce that (A − λI)vk+1 = vk.
Solution: We have

xr+1(t) = eλt
[
vk

tr+1−k

(r + 1 − k)!
+ vk+1

tr−k

(r − k)!
+ vk+2

tr−k−1

(r − k − 1)!
+ · · · + vr−1

t2

2!
+ vrt + vr+1

]

So, ẋr+1(t) = λxr+1(t) + eλt
[
vk

tr−k

(r − k)!
+ vk+1

tr−k−1

(r − k − 1)!
+ vk+2

tr−k−2

(r − k − 2)!
+ · · · + vr−1t + vr

]

Axr+1(t) = λxr+1(t) + xr(t), r = k, k + 1, · · · ,m − 1

∴ (A − λI)xr+1(t) = xr(t), r = k, k + 1, · · · ,m − 1.

Also putting r = k, we get, (A−λI)xk+1(t) = xk(t)⇒ (A−λI)eλt(vkt+vk+1) = eλtvk ⇒ (A−λI)(vkt+

vk+1) = vk ⇒ (A − λI)vk+1 = vk, (∵ Avk = λvk).
Example 1.17 Find the general solution for the system

dy1

dt
= 3y1 + y2

dy2

dt
= −y1 + y2

Solution: This equation is y′ = Ay with

A =

(
3 1
−1 1

)

We can find the eigenvalues, the characteristic equation is
∣∣∣∣∣

3 − λ 1
−1 1 − λ

∣∣∣∣∣ = (3 − λ)(1 − λ) + 1 = λ2 − 4λ + 4 = 0

so that λ = 2, 2 i.e repeated eigenvalues. Next, we need the eigenvector for λ = 2:
(

3 1
−1 1

) (
a
b

)
=

(
2a
2b

)

so 3a + b = 2a or b = −a, hence, choosing a = 1 we get

v1 =

(
1
−1

)
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As the eigenvalue λ = 2 is repeated two times, so the general solution can be written as

y = c1v1e2t + c2 (tv1 + v2) e2t

where we are to find the value of v2 which satisfies the equation
(

3 − λ 1
−1 1 − λ

)
v2 = v1 ⇒

(
1 1
−1 −1

)
v2 =

(
1
−1

)
(See example 1.16).

Writing v2 =

(
e
f

)
,

we have

e + f = 1

−e − f = −1

These two equations are the same, as you expect, and if f = 0 then e = 1. Thus, the general
solution is given by

y = c1v1eλt + c2(v1t + v2)eλt = c1

(
1
−1

)
e2t + c2

[(
1
−1

)
t +

(
1
0

)]
e2t

or, y =

[
(c1 + c2t)

(
1
−1

)
+ c2

(
1
0

)]
e2t.

where c1 and c2 are integrating constants.
Example 1.18 Find the general solution for the system

dx
dt

=


9 4 0
−6 −1 0
6 4 3

 x

Solution: This equation is dx
dt = Ax with

A =


9 4 0
−6 −1 0
6 4 3



We can find the eigenvalues, the characteristic equation is
∣∣∣∣∣∣∣∣

9 − λ 4 0
−6 −1 − λ 0
6 4 3 − λ

∣∣∣∣∣∣∣∣
= (3−λ)((9−λ)(−1−λ)+24) = (3−λ)(15−8λ+λ2) = (5−λ)(3−λ)2 = 0.

Thus A has the distinct eigenvalue λ1 = 5 and repeated eigenvalue λ2 = 3 of multiplicity m = 2.
Case 1: λ1 = 5. The eigenvector equation (A − λI)v = 0, where v = [a, b, c]T is

(A − 5I)v =


4 4 0
−6 −6 0
6 4 −2




a
b
c

 =


0
0
0



Each of the first two equations 4a + 4b = 0 and −6a − 6b = 0 yields b = −a. Then the third
equation reduces to 2a − 2c = 0, so that c = a. The choice a = 1 then yields the eigenvector
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v1 = [1,−1, 1]T associated with the eigenvalue λ1 = 5.
Case 2: λ2 = 3. The eigenvector equation is

(A − 3I)v =


6 4 0
−6 −4 0
6 4 0




a
b
c

 =


0
0
0



so the nonzero vector v = [a, b, c]T is an eigenvector if and only if 6a + 4b = 0. If c = 1, then
a = b = 0, this gives the eigenvector v2 = [0, 0, 1]T associated with λ2 = 3. If c = 0, then we must
choose a to be nonzero. For instance, if a = 2, we get b=-3, so v3 = [2,−3, 0]T is second linearly
independent eigenvector associated with the multiplicity 2 eigenvalue λ2 = 3.
Thus we have found a complete set v1,v2,v3 of three eigenvectors associated with the eigen-
values 5, 3, 3. The corresponding general solution of (1.18) is

x(t) = c1v1e5t + c2v2e3t + c3v3e3t = c1


1
−1
1

 e5t + c2


0
0
1

 e3t + c3


2
−3
0

 e3t with scalar component

functions given by x1(t) = c1e5t + 2c3e3t, x2(t) = −c1e5t − 3c3e3t, x3(t) = c1e5t + c2e3t.

1.7.2 Structure of the solutions of n− dimensional homogeneous linear sys-
tems

The general homogeneous, first order linear system of n dimensions is ẋ = A(t)x where A(t) is
an n × n matrix whose elements ai j are functions of time and x(t) is a column vector of the n
variables.

1.7.3 Gauss Jordan Elimination Method

Using Gauss Jordan elimination method, the coefficient matrix is reduced to a diagonal matrix.
Hence, Gauss Jordan elimination method

[A | B ]
Gauss Jordan Method−−−−−−−−−−−−−−−→ [I | D ]

If Gauss-Jordan elimination is applied on a square matrix, it can be used to obtain the inverse
of the said matrix. This can be done by augmenting the square matrix with the identity matrix
of the same dimensions and used to the following matrix operations:

[AI]⇒ A−1[AI]⇒ [IA−1]

Example 1.19 Find A−1 by GaussJordan elimination method: MCA-06

A =


1 3 3
1 4 3
1 3 4



Solution: By performing elementary row operations on the [A|I] matrix until it reaches reduced
row echelon form, the following is the final result:
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[A | I] =


1 3 3 | 1 0 0
1 4 3 | 0 1 0
1 3 4 | 0 0 1



Applying R2 − R1 and R3 − R1, we get

∼

1 3 3 | 1 0 0
0 1 0 | −1 1 0
0 0 1 | −1 0 1



Applying R1 − 3R2, we get

∼

1 0 3 | 4 −3 0
0 1 0 | −1 1 0
0 0 1 | −1 0 1



Applying R1 − 3R3, we get

∼

1 0 0 | 7 −3 −3
0 1 0 | −1 1 0
0 0 1 | −1 0 1



Therefore the inverse of the given matrix is

A−1 =


7 −3 −3
−1 1 0
−1 0 0



Example 1.20 Find all solutions of the system ẋ = A(t)x with initial conditions x(0) =

[0, 1, −1]T where x =


x1
x2
x3

, A(t) =


0 1 0
1 0 0

te−t te−t 1

.

Solution: The solution is given in Theorem-1.13. Now find a fundamental solution matrix of the
homogenous system ẋ(t) = A(t)x(t). So the equations are ẋ1 = x2, ẋ2 = x1 and ẋ3−x3 = te−t(x1+x2).
From the first two equations, x1 = aet + be−t and x2 = aet − be−t

The third equation now becomes ẋ3−x3 = 2at which has the general solution x3 = −2a(1+t)+cet.
Hence a fundamental solution matrix is

X(t) =


et e−t 0
et −e−t 0

−2(1 + t) 0 et

 ,

By using Gauss-Jordan elimination Method to X(t), we have,

X−1(t) =
1
2


e−t e−t 0
et −et 0

2(1 + t)e−2t 2(1 + t)e−2t 2e−t



and X−1(0) =
1
2


1 1 0
1 −1 0
2 2 2

 .
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Thus the required solution is

x(t) =


et e−t 0
et −e−t 0

−2(1 + t) 0 et


1
2


1 1 0
1 −1 0
2 2 2




0
1
−1



=


et e−t 0
et −e−t 0

−2(1 + t) 0 et





1
2−1
2
0



Hence the solution is

x1(t) =
et

2
− e−t

2

x2(t) =
et

2
+

e−t

2
x3(t) = −(t + 1).

1.7.4 Structure of the solutions of n− dimensional non-homogeneous linear
systems

The general non-homogeneous, first order linear system of n dimensions is

ẋ = A(t)x + f (t), (1.58)

where A(t) is an n × n matrix whose elements ai j are functions of time and x(t) and f (t) are the
column vectors of the n variables.

The associate homogeneous system is

Φ̇ = A(t)Φ. (1.59)

The following properties are readily verified.

1. Let x = xp(t) be any solution of (1.58) (called a particular solution of the given system)
and φ(t) = φc(t) any solution of (1.59)(called the complementary function for the given
system). Then xp(t) + φc(t) is the general solution of (1.58).

2. Let xp1(t) and xp2(t) be any solutions of (1.58). Then xp1(t) − xp2(t) is the solution of (1.59),
i.e it is a complementary function.

Example 1.21 Find all solutions of the system

dy1

dt
= y2

dy2

dt
= −y1 + t

Gate(MA): 2017

Solution: Here A =

(
0 1
−1 0

)
and f (t) =

(
0
t

)
The corresponding homogenous system is
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φ̇1(t) = φ2(t) and φ̇2(t) = −φ1(t) which is equivalent to φ̈1(t)+φ1(t) = 0. The linearly independent
solutions φ1 = cos t, sin t correspond respectively to φ2 = − sin t, cos t. Therefore, all solutions

of the corresponding homogenous system are the linear combination of
(

cos t
sin t

)
,
(
− sin t
cos t

)

which are given in matrix form by φ(t) =

(
cos t − sin t
sin t cos t

) (
a1
a2

)
, where a1, a2 are arbitrary

constants.
It is notice that y1 = t and y2 = 1 is the particular solution of the given system. Therefore the
general solution is

y(t) =

(
cos t − sin t
sin t cos t

) (
a1
a2

)
+

(
t
1

)

,

Theorem 1.17 The solution of the system ẋ(t) = A(t)x(t) + f(t) with initial conditions x(t0) = x0

is given by

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

t∫

t0

Φ−1(s)f(s)ds,

where Φ(t) is any fundamental solution matrix of the corresponding homogeneous system
Φ̇(t) = A(t)Φ

Proof. Let x(t) be the required solution, for which the following form is postulated

x(t) = Φ(t)Φ−1(t0){x0 + Φ(t)} (1.60)

The inverses of Φ(t) and Φ−1(t0) exist since, by Theorem 1.9, they are non-singular. Then by the
initial condition x(t0) = x0, or x0 + Φ(t0) by (1.60) and so

Φ(t0) = 0.

To find the equation satisfied by Φ(t), substitute (1.60) into the equation, which becomes

Φ̇(t)Φ−1(t0){x0 + Φ(t)} + Φ(t)Φ−1(t0)Φ̇(t) = A(t)Φ(t)Φ−1(t0){x0 + Φ(t)} + f(t).

Since Φ(t) is a solution matrix of the homogeneous equation, Φ(t) = A(t)Φ(t), and the previous
equation then becomes

Φ(t)Φ−1(t0)Φ̇(t) = f(t).

Therefore,
Φ̇(t) = Φ(t0)Φ−1(t)f(t),

whose solution satisfying the initial condition is

Φ(t) = Φ(t0)

t∫

t0

Φ−1(s)f(s)ds.

Therefore, by (1.60),

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

t∫

t0

Φ−1(s)f(s)ds.
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Example 1.22 Find all solutions of the system ẋ = A(t)x + f(t) with initial conditions x(0) =

[0, 1, −1]T where x =


x1
x2
x3

, A(t) =


0 1 1
1 0 0

te−t te−t 1

 and f(t) =


et

0
1

.

Solution: The solution is given in Theorem-1.17. Now find a fundamental solution matrix of
the associated homogenous system Φ̇(t) = A(t)Φ(t). So the equations are Φ̇1 = Φ2, Φ̇2 = Φ1 and
Φ̇3 −Φ3 = te−t(Φ1 + Φ2). From the first two equations, Φ1 = aet + be−t and Φ2 = aet − be−t

The third equation now becomes Φ̇3−Φ3 = 2at which has the general solution Φ3 = −2a(1+t)+cet.
Hence a fundamental solution matrix is

Φ(t) =


et e−t 0
et −e−t 0

−2(1 + t) 0 et

 ,

Φ−1(t) =
1
2


e−t e−t 0
et −et 0

2(1 + t)e−2t 2(1 + t)e−2t 2e−t



and Φ−1(0) =
1
2


1 1 0
1 −1 0
2 2 2

 .

Thus the required solution is

x(t) =


et e−t 0
et −e−t 0

−2(1 + t) 0 et


1
2


1 1 0
1 −1 0
2 2 2




0
1
−1



+


et e−t 0
et −e−t 0

−2(1 + t) 0 et


1
2

∫ t

0


e−s e−s 0
es −es 0

2(1 + s)e−2s 2(1 + s)e−2s 2e−s




es

0
1

 ds

=


et e−t 0
et −e−t 0

−2(1 + t) 0 et





1
2−1
2
0



+


et e−t 0
et −e−t 0

−2(1 + t) 0 et


1
2

∫ t

0


1

e2s

(4 + 2s)e−s

 ds

=


et e−t 0
et −e−t 0

−2(1 + t) 0 et





1
2−1
2
0



+


et e−t 0
et −e−t 0

−2(1 + t) 0 et


1
2


t

e2t

2 − 1
2

(6 − 2(3 + t)e−t



Hence the solution is

x1(t) = (
3
4

+
1
2

t)et − 3
4

e−t

x2(t) = (
1
4

+
1
2

t)et +
3
4

e−t

x3(t) = 3et − t2 − 3t − 4.
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Lemma 1.1 Let Φ(t) be any fundamental matrix of the system Φ̇ = AΦ, A is constant matrix.
Then for any two parameters s , t0,

Φ(t)Φ−1(s) = Φ(t − s + t0)Φ−1(t0).

In particular,
Φ(t)Φ−1(s) = Φ(t − s)Φ−1(0).

Proof. Since Φ̇ = AΦ, if we define U(t) = Φ(t)Φ−1(s), then ˙U(t) = AU(t), and U(s) = I.
Now consider V(t) = Φ(t − s + t0)Φ−1(t0). Then ˙V(t) = AV(t). (for since A is constant, Φ(t) and
Φ(t − s + t0) satisfy the same equation), and V(s) = I.
Therefore, the corresponding columns of U and V satisfy the same equation with the same
initial conditions, and are therefore identical by the Uniqueness Theorem.

Theorem 1.18 Let A be a constant matrix. The solution of the system ẋ = Ax + f(t) with initial
conditions x(t0) = x0 is given by

x(t) = Φ(t)Φ−1(t0)x0 +

t∫

t0

Φ(t − s + t0)Φ−1(t0)f(s)ds,

where Ψ(t) is any fundamental matrix satisfying Ψ(t0) = I, then

x(t) = Ψ(t)x0 +

t∫

t0

Ψ(t − s)f(s)ds.

Proof. The Theorem 1.18 is obtained by applying the Lemma 1.1 to Theorem 1.17.

Example 1.23 express the solution of the second order equation ẍ − x = f (t) with x(0) =

0, ẋ(0) = 1 as an integral.

Solution: An equivalent first order differential equation is

ẋ = y, ẏ = x + f (t),

and (
ẋ
ẏ

)
=

(
0 1
1 0

) (
x
y

)
+

(
0

f (t)

)
= A

(
x
y

)
+ f(t).

Since the eigenvalues of A are λ1 = 1, λ2 = −1 and the corresponding eigenvectors are r1 =

[1, 1]T and r2 = [1, −1]T, a fundamental matrix for the homogeneous system is

Φ(t) =

(
et e−t

et −e−t

)
.

Then, following Theorem 1.18

Φ(0) =

(
1 1
1 −1

)
, Φ−1(0) =

(
1
2

1
2

1
2 − 1

2 ,

)
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and
(
x
y

)
=

(
et e−t

et −e−t

) (
1
2

1
2

1
2 − 1

2 ,

) (
0
1

)
+

t∫

0

(
et−s e−t+s

et−s −e−t+s

) (
1
2

1
2

1
2 − 1

2 ,

) (
0

f (t)

)
ds

=

(
sinh t
cosh

)
+

t∫

0

(
f (t) sinh(t − s)
f (t) cosh(t − s)

)
ds.

1.7.5 Structure of the solutions of n− dimensional non-homogeneous linear
systems with constant coefficients

The general non-homogeneous, first order linear system of n dimensions is

ẋ(t) = Ax(t) + f (t). (1.61)

where A is an n × n matrix whose elements ai j are real constants, x(t) and f (t) are the column
vectors of the n variables.
The complementary solution of the homogeneous system ẋ(t) = Ax(t) has been obtained as
x(t) = X(t)C, where X(t) is a fundamental matrix, whose columns are linearly independent and
each is a solution of the homogeneous system, i.e., Ẋ(t) = AX(t), and C is an n-dimensional
constant vector.
Applying the method of variation of parameters, vary the constant vector C in the complemen-
tary solution x(t) = X(t)C to make it a vector of functions of t, i.e., C = c(t). Thus a particular
solution is assumed to be of the form

x(t) = X(t)c(t).

Differential with respect to t yields

ẋ(t) = Ẋ(t)c(t) + X(t)ċ(t) = Ax(t) + f (t)

Substituting X′(t) = AX(t) and x(t) = X(t)c(t) yields

AX(t)c(t) + X(t)c′(t) = AX(t)c(t) + f (t),

X(t)c′(t) = f (t)⇒ c′(t) = X−1(t) f (t)

Integrating with respect to t gives

c(t) = C +

∫
X−1(t) f (t)dt

Hence, the general solution is given by

x(t) = X(t)c(t) = X(t)
{
C +

∫
X−1(t) f (t)dt

}

For the nonhomogeneous system x′(t) = Ax(t) + f (t) with the initial condition x(t0) = x(0),the
general solution can be written as

x(t) = X(t)
{
C +

∫ t

t0

X−1(t) f (t)dt
}
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with x(t0) = X(t0)C ⇒ C = X−1(t0)x(t0), which yields. So, to find a particular solution using
the method of variation of parameters, one must evaluate the inverse X−1(t) of a fundamental
matrix X(t). Finally the general solution is

x(t) = X(t)
{
X−1(t0)x(t0) +

∫ t

t0

X−1(t) f (t)dt
}
.

Example 1.24 Find the general solution for the system

dy1

dt
= −3y1 − 4y2 + 2e−t

dy2

dt
= y1 + y2

Solution: In the matrix form, the system of differential equations can be written as ẏ(t) =

Ay(t) + f (t) with

y(t) =

(
y1
y2

)
, A =

(
−3 −4
1 1

)
, f (t) =

(
2e−t

0

)
.

The characteristic equation is

det(A − λ I) =

∣∣∣∣∣
−3 − λ −4

1 1 − λ
∣∣∣∣∣ = λ2 + 2λ + 1 = 0⇒ λ = −1, −1.

Hence, λ = −1 is an eigenvalue of multiplicity 2. The eigenvector equation for λ = −1 is

(A − λ I)v1 =

(
−2 −4
1 2

) (
v11
v21

)
=

(
0
0

)
⇒ v11 + 2v21 = 0.

Taking v21 = −1, then v11 = −2v21 = 2,

∴ v1 =

(
v11
v21

)
=

(
2
−1

)
.

The second linearly independent eigenvector does not exist. Hence, matrix A is imperfective
and a complete basis of eigenvectors is obtained by including a generalized eigenvector:

(A − λ I)v2 = v1 ⇒
(
−2 −4
1 2

) (
v21
v22

)
=

(
2
−1

)
⇒ v21 + 2v22 = −1.

Taking v22 = −1, then v11 = −1 − 2v21 = 1,

∴ v2 =

(
v21
v22

)
=

(
1
−1

)
.

Two linearly independent solutions are

y1 = eλ tv1 =

(
2
−1

)
e−t, y2 = eλ t(v1t + v2) =

{ (
2
−1

)
t +

(
1
−1

) }
e−t

The fundamental matrix is

Y(t) = [y1, y2] =

(
2e−t (2t + 1)e−t

−e−t −(t + 1)e−t

)
, det(y) = −2e−2t
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and its inverse is obtained as

Y−1(t) = [y1, y2] =

(
(t + 1)et (2t + 1)et

−et −2et

)
.

It is easy to evaluate
∫

Y−1(t) f (t)dt =

∫ (
(t + 1)et (2t + 1)et

−et −2et

) (
2e−t

0

)
dt

=

∫ (
2(t + 1)
−2

)
dt =

(
t2 + 2t
−2t

)

The general solution is

y(t) = y(t)
{
C +

∫
Y−1(t) f (t)dt

}
=

(
2e−t (2t + 1)e−t

−e−t −(t + 1)e−t

) (
c1 + t2 + 2t

c2 − 2t

)

y1(t) = e−t[−2t2 + 2(c2 + 1)t + (2c1 + c2)], y2(t) = e−t[t2 − c2t − (c1 + c2)].

1.8 Solution of Simultaneous Equation of Type-II

Simultaneous Linear Differential Equations of Type-II is of the form

dx
P

=
dy
Q

=
dz
R

(1.62)

where P, Q and R are functions of x, y, z.
By the solution of the equation (1.62), we mean to find a solution of the form φ(x, y, z) = 0 and
ψ(x, y, z) = 0 where φ and ψ are two independent integrals of the given equations (1.62) viz.
c1φ + c2ψ = 0 is possible only when two arbitrary constants c1 and c2 are zero individually.

1.8.1 Methods of Solution of Equations of Type-II

The equation of the type

dx
P

=
dy
Q

=
dz
R

can be solved by using different techniques depending on the nature of P, Q and R.

1.8.2 Method-I

When P, Q and R such function of x, y, z that any two parts of the equations (1.62), when
considered separately, can be solved by the method of separation of variables. Then considering
two parts separately we get a relation between two variables, say u = 0 and then considering
another two parts we get another relation among the variables like v = 0 and finally u = 0, v = 0
will give the general solution of the system.



SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS 35

Example 1.25 Solve: dx
yz =

dy
xz = dz

xy

Solution : We have

dx
yz

=
dy
xz

=
dz
xy

(1.63)

From the first two ratio of (1.63), we get xdx − ydy = 0. Then integrating we get

i.e, x2 − y2 = c1, c1being an integrating constant (1.64)

Again from last two parts we get, zdz − ydy = 0 and integrating, we have z2 − y2 = c2, c2

being an integrating constants. Eliminating c1, c2, we get the required solution( surface) as
φ(x2 − y2, z2 − y2) = 0.

1.8.3 Method-II

If P, Q and R are such, that considering two parts of the equation (1.62), like method-I, a relation
between two variables can be found and using this relation another two parts can be integrated
to get other relation connecting the variable and ultimately we get two independent relation to
represent the general solution of (1.62).

Example 1.26 Solve: dx
xy =

dy
y2 = dz

xyz−2x2 .

Solution : We have

dx
xy

=
dy
y2 =

dz
xyz − 2x2 (1.65)

From the first two ratio of (1.65), we have dx
x =

dy
y . Then integrating, we get

x = c1y, (1.66)

c1 being an integrating constant. Again, from last two parts we get
dy
y2 = dz

xyz−2x2 ⇒ dy
y2 = dz

c1 y2z−2c2
1 y2 (using (1.66)) and then integrating, we get

c1y = log(z − 2c1) + c2, c2being an integrating constants

⇒ x = log(z − 2x
y

) + c2 [since x = c1y]

Hence the required solution is log(z − 2x
y ) − x = φ( x

y ).

1.8.4 Method-III

If P1, Q1 and R1 be such function of (x, y, z) that when we write the given equations as

dx
P

=
dy
Q

=
dz
R

=
P1dx + Q1dy + R1dz
PP1 + QQ1 + RR1

then PP1 + QQ1 + RR1 = 0
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So we may write P1dx + Q1dy + R1dz = 0. Now if these P1, Q1 and R1 also be such that
P1dx + Q1dy + R1dz = 0 can be integrated to get a function φ(x, y, z) = 0. If another set of such
(P1, Q1,R1) can be found, we get another integral ψ(x, y, z) = 0 and these two integrals together
will give the solution of (1.62).

Example 1.27 Solve: dx
3y−2z =

dy
z−3x = dz

2x−y

Solution: The given equation

dx
3y − 2z

=
dy

z − 3x
=

dz
2x − y

(1.67)

can be written by Method-III as

dx + 2dy + 3dz = 0

xdx + ydy + zdz = 0

Which integrate to two families of surfaces

x + 2y + 3z = c1 (1.68)

x2 + y2 + z2 = c2 (1.69)

Where c1, c2 are two arbitrary constants. Then the required general solution is given by (1.68)
and (1.69) or φ(x2 + y2 + z2, x + 2y + 3z) = 0

1.8.5 Method-IV

If P1, Q1 and R1 be such function of (x, y, z) that

P1dx + Q1dy + R1dz
PP1 + QQ1 + RR1

=
d(PP1 + QQ1 + RR1)

PP1 + QQ1 + RR1

Then combing this with one of the ratio dx
P or dy

Q or dz
R , we may get one function φ(x, y, z) = 0

and if otherwise we can get another functional relation ψ(x, y, z) = 0, then combining these two,
we get the solution of the equation (1.62).
Example 1.28 Solve

dx
y2(x − y)

=
dy

x2(y − x)
=

dz
z(x2 + y2)

Solution : We have

dx
P

=
dy
Q

=
dz
R

⇒ dx
y2(x − y)

=
dy

x2(y − x)
=

dz
z(x2 + y2)

(1.70)

Taking first two parts of (1.70), we get

dx
y2(x − y)

=
dy

x2(y − x)

⇒ x2dx + y2dy = 0
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Integrating, we get

x3 + y3 = c1, (1.71)

where c1 being an arbitrary constants. Again, each part of (1.70) is equal to

dx − dy
y2(x − y) − x2(y − x)

=
d(x − y)

(x − y)(x2 + y2)

Now combining this with the third part of (1.70), we get

d(x − y)
(x − y)(x2 + y2)

=
dz

z(x2 + y2)

⇒ d(x − y)
x − y

=
dz
z

Integrating, we get, log(x − y) − log z = log c2, where c2 being an arbitrary constants.

i.e ,
x − y

z
= c2 (1.72)

So the general integral is given, using (1.71) and (1.72) as φ(x3 + y3,
x−y

z ) = 0.

1.8.6 Geometrical Interpretation of dx
P =

dy
Q = dz

R

It is known from geometry that the direction cosines of the tangent to a curve are given by
( dx

ds ,
dy
ds ,

dz
ds ). Thus the direction cosines of this tangent are proportional to dx, dy and dz. Again

from the equation dx
P =

dy
Q = dz

R , we see that dx, dy and dz are proportional to P,Q and R. Thus
(P,Q,R) are the corresponding direction rations of the tangents to the curves at (x, y, z). Thus
geometrically the above differential equations represents a system of curves in space such that
the direction cosines of the tangent to these curves at any point (x, y, z) are proportional to
(P,Q,R).

1.9 Worked Out Examples

Example 1.29 Find the first order simultaneous differential equations of the system

d3x
dt3 − 2

d2x
dt2 −

dx
dt

+ 2x = et

Solution: Write as the equivalent first order system

dx
dt

= y,
dy
dt

= z,
dz
dt

= −2x + y + 2z + et
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Example 1.30 Let P1,P2, · · ·Pn be n constants, then show that the differential equation dnx(t)
dtn +

P1
dn−1x(t)

dtn−1 + P2
dn−2x(t)

dtn−2 + · · · + Pnx(t) = 0 is equivalent to the system

dx1(t)
dt

= x2(t), where x1(t) = x(t)

dx2(t)
dt

= x3(t)

...
...

...
dxn−1(t)

dt
= xn(t)

dxn(t)
dt

= −Pnx1(t) − Pn−1x2(t) − · · · − P1xn(t).

Show that the equation for the eigenvalues is

λn + P1λ
n−1 + P2λ

n−2 + · · · + Pn = 0.

Proof. The given differential equation dnx(t)
dtn + P1

dn−1x(t)
dtn−1 + P2

dn−2x(t)
dtn−2 + · · ·+ Pnx(t) = 0 can be written

as

dx1(t)
dt

= x2(t), where x1(t) = x(t)

dx2(t)
dt

= x3(t)

...
...

...
dxn−1(t)

dt
= xn(t)

dxn(t)
dt

= −Pnx1(t) − Pn−1x2(t) − · · · − P1xn(t).

The matrix of coefficients for the above system is

A =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1
−Pn −Pn−1 −Pn−2 −Pn−3 · · · −P1



.

The eigenvalues are given by


−λ 1 0 0 · · · 0
0 −λ 1 0 · · · 0
0 0 −λ 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1
−Pn −Pn−1 −Pn−2 −Pn−3 · · · −P1 − λ



= 0.

Let Dn(λ) denoted the determinant in the previous equation. Then expansion by row 1 leads to

Dn(λ) = −λDn−1(λ) + (−1)nPn. (1.73)



SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS 39

For decreasing n, we have

Dn−1(λ) = −λDn−2(λ) + (−1)n−1Pn−1, (1.74)

· · · · · · · · ·
D2(λ) = −λD1(λ) + P2. (1.75)

where D1(λ) = −P1 − λ. Now eliminating Dn−1(λ), Dn−2(λ), · · · from equations (1.73) through
(1.75) by multiplying successive equations by −λ, +λ and so on, and adding them. The result
is

Dn(t) = (−1)n(Pn + Pn−1λ + · · · + P1λ
n−1 + λn).

The required result follows by equating Dn(λ) = 0. Therefore, the equation for the eigenvalues
is λn + P1λn−1 + P2λn−2 + · · · + Pn = 0.

Example 1.31 Solve dx
dt + 3x + y = et,

dy
dt − x + y = e2t

Solution: Writing D for d
dt , the equations are

(D + 3)x + y = et (1.76)

and (D + 1)y − x = e2t (1.77)

Putting the value of y = et − (D + 3)x in (1.77), we get

(D + 1){et − (D + 3)x} − x = e2t

⇒ (D + 1)et − (D + 1)(D + 3)x − x = e2t

⇒ et + et − (D2 + 4D + 3 + 1)x = e2t

⇒ (D2 + 4D + 4)x = 2et − e2t (1.78)

Let y(x) = emt (m being a constant) be a trial solution of the corresponding homogenous
differential equation of (1.78). Then its auxiliary equation is

m2 + 4m + 4 = 0

⇒ m = −2,−2

The complementary function of the equation (1.78) is

C.F = (A + Bt)e−2t, where A and B are arbitrary constants.

The particular integral of (1.78) is

P.I =
1

D2 + 4D + 4
(2et − e2t)

=
2

D2 + 4D + 4
et − 1

D2 + 4D + 4
e2t

=
2et

12 + 4.1 + 4
− e2t

22 + 4.2 + 4

=
2et

9
− e2t

16

Therefore the general solution of the equation (1.78) is

x = (A + Bt)e−2t +
2et

9
− e2t

16
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Putting these value of x in (1.76), we get

y = et − (D + 3)x

= et − (D + 3)
(
(A + Bt)e−2t +

2et

9
− e2t

16

)

= et − d
dt

(
(A + Bt)e−2t +

2et

9
− e2t

16

)
− 3

(
(A + Bt)e−2t +

2et

9
− e2t

16

)

= et −
(
− 2(A + Bt)e−2t + Be−2t +

2et

9
− e2t

8

)
− 3

(
(A + Bt)e−2t +

2et

9
− e2t

16

)

= −(A + B + Bt)e−2t +
et

9
+

5
16

e2t.

Therefore the solution of the given simultaneous linear equation is given by

y = −(A + B + Bt)e−2t +
et

9
+

5
16

e2t.

and x = (A + Bt)e−2t +
2et

9
− e2t

16
.

Example 1.32 Solve dx
dt + 3x + y = et,

dy
dt − x + y = e2t

Solution: Writing D for d
dt , the equations are

(D + 3)x + y = et (1.79)

and −x + (D + 1)y = e2t (1.80)

Let the complementary solutions of the given system of linear differential equation (1.80) be
xc(t), yc(t). Then xc, yc are satisfied the homogenous differential equations of (1.79) and (1.80)
i.e.

φ(D)xc(t) = 0, φ(D)yc(t) = 0

where φ(D) is determinant of the coefficient matrix of the given system of linear differential
equations (1.79)-(1.80) i.e,

φ(D) =

∣∣∣∣∣
D + 3 1
−1 D + 1

∣∣∣∣∣
Hence the unknowns xc(t), yc(t), all have the same characteristic equation φ(λ) = 0 and, as a
result, the same form of complementary solutions. Now,

φ(λ) =

∣∣∣∣∣
λ + 3 1
−1 λ + 1

∣∣∣∣∣ = (λ + 2)2

So, φ(λ) = 0,⇒ λ = −2, −2. Hence, they have the same complementary solutions given by
xc = (A + Bt)e−2t and yc = (C + Dt)e−2t.
To find the particular solution of the given system of linear differential equation (1.80), we have,

∆x(t) =

∣∣∣∣∣
et 1
e2t D + 1

∣∣∣∣∣ = 2et − e2t,

∆y(t) =

∣∣∣∣∣
D + 3 et

−1 e2t

∣∣∣∣∣ = 5e2t + et,
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xp(t) =
∆x(t)
φ(D)

=
2et − e2t

(D + 2)2 =
2et

9
− e2t

16
,

yp(t) =
∆y(t)
φ(D)

=
5e2t + et

(D + 2)2 =
et

9
+

5e2t

16
.

The general solutions are

x(t) = xc(t) + xp(t) = (A + Bt)e−2t +
2et

9
− e2t

16
(1.81)

y(t) = yc(t) + yp(t) = (C + Dt)e−2t +
et

9
+

5e2t

16
(1.82)

Since φ(D) = 0 is a polynomial of degree 2 in D, the general solutions should contain only two
arbitrary constants. The two extra constants can be eliminated by substituting equations into
either (1.81) or (1.82). Substitute the equations (1.81) and (1.82) in (1.80) to eliminate the two
extra constants, we get, C = −A − B and D = −B. Then the general solutions become

x(t) = (A + Bt)e−2t +
2et

9
− e2t

16
,

y(t) = −(A + B + Bt)e−2t +
et

9
+

5
16

e2t

Note:(Alternative Method) The two extra constants C, D can be eliminated by substituting the
complementary solutions xc(t), yc(t) into either the homogeneous equation of (1.79) or (1.80).
So, substitute the complementary solutions xc(t), yc(t) in (D+3)x+y = 0 i.e., (D+3)xc(t)+yc(t) =

0 to eliminate the two extra constants, we get, C = −A − B and D = −B.

Example 1.33 Find the solution for the system

y′1 = 4y1 + y2

y′2 = −y1 + 2y2.

with initial conditions y1(0) = 3 and y2(0) = 2.
Solution:

A =

(
4 1
−1 2

)

and there is only one eigenvector,

v =

(
−1
1

)

with eigenvalue λ = 3. The general solution is

y = c1veλt + c2(tv + u)eλt

where u satisfies
(A − λI) u = v (See example 1.16)

and so, in this case, (
1 1
−1 −1

)
u =

(
−1
1

)
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and a solution to this is

u =

(
−1
0

)

and so the general solution is

y = c1

(
−1
1

)
e3t + c2

[
t
(
−1
1

)
+

(
−1
0

)]
e3t

Now, putting t = 0 we get (
3
2

)
= c1

(
−1
1

)
+ c2

(
−1
0

)

and, hence,

3 = −c1 − c2

2 = c1

also c2 = 1 and c2 = −5 giving

y = 2
(
−1
1

)
e3t − 5

[
t
(
−1
1

)
+

(
−1
0

)]
e3t

or

y1 = (3 + 5t)e3t

y2 = (2 − 5t)e3t

Example 1.34 Find the solution for the system

dy1

dt
= −3y1 + 2y2

dy2

dt
= −2y1 + 2y2

Solution: This equation is y′ = Ay with

A =

(
−3 2
−2 2

)

We can find the eigenvalues, the characteristic equation is
∣∣∣∣∣
−3 − λ 2
−2 2 − λ

∣∣∣∣∣ = (λ + 3)(λ − 2) + 4 = λ2 + λ − 2 = 0

so that λ1 = 1 and λ2 = −2.

Next, we need the eigenvectors. First, λ1:
(
−3 2
−2 2

) (
a
b

)
=

(
a
b

)

so −3a + 2b = a or b = 2a, hence, choosing a = 1 we get

x1 =

(
1
2

)
.
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For λ2: (
−3 2
−2 2

) (
a
b

)
= −2

(
a
b

)

so −3a + 2b = −2a giving a = 2b, choosing b = 1 gives

x2 =

(
2
1

)

Now, in general the solution is

y = c1x1eλ1t + c2x2eλ2t

so, here,

y = c1

(
1
2

)
et + c2

(
2
1

)
e−2t

Example 1.35 Find the general solution to

y′ − 2y = −t

Solution: This follows from the general solution to

y′ + ry = f (t) (1.83)

which is

y = Ce−rt + e−rt
∫

ert f dt (1.84)

so here r = −2 and f (t) = −t so, using integration by parts

y = Ce2t − e2t
∫

te−2tdt

= Ce2t − e2t
{
−1

2
te−2t +

1
2

∫
e−2tdt

}

= Ce2t − e2t
{
−1

2
te−2t − 1

4
(e−2t)

}

= Ce2t +
t
2

+
1
4

(1.85)

Example 1.36 Solve: dx
x2(y−z) =

dy
y2(z−x) = dz

z2(x−y)

Solution: We have

dx
x2(y − z)

=
dy

y2(z − x)
=

dz
z2(x − y)

.

Gives rise

dx
x2 +

dy
y2 +

dz
z2 = 0

dx
x

+
dy
y

+
dz
z

= 0
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Which integrate to two families of surfaces

1
x

+
1
y

+
1
z

= c1

⇒ log x + log y + log z = log c2 ⇒ xyz = c2

Where c1, c2 are two arbitrary constants. Therefore the general integral is 1
x + 1

y + 1
z = φ(xyz).

Example 1.37 Solve: dx
x(y2+z2) =

dy
y(x2+z2) = dz

z(x2−y2) .

Solution : We have
dx

x(y2 + z2)
=

dy
y(x2 + z2)

=
dz

z(x2 − y2)
(1.86)

Each ratio of(1.86),
dx
x −

dy
y + dz

z

y2+z2−x2−z2+x2−y2 =
dx
x −

dy
y + dz

z

0 ⇒ dx
x −

dy
y + dz

z = 0 and integrating we get,
log x − log y + log z = log c1.

i.e.,
xz
y

= c1, (1.87)

where c1 being integrating constant. Again, each ratio of (1.86) is given by

xdx − ydy − zdz
x2(y2 + z2) − y2(x2 + z2) − z2(x2 − y2)

=
xdx − ydy − zdz

0
⇒ xdx − ydy − zdz = 0

Integrating, we get,
x2 − y2 − z2 = c2 (1.88)

c2 being an integrating constant. Then the equations (1.87) and (1.88) constitute the general
solution of the equation as φ(x2 − y2 − z2, xz

y ) = 0.

Example 1.38 Solve: dx
x(y2+z) =

dy
−y(x2+z) = dz

z(x2−y2) which contains the straight line x+y = 0, z = 1.

Solution : We have
dx

x(y2 + z)
=

dy
−y(x2 + z)

=
dz

z(x2 − y2)
(1.89)

Each ratio of(1.89) is
dx
x +

dy
y + dz

z

y2+z−x2−z+x2−y2 =
dx
x +

dy
y + dz

z

0 i.e dx
x +

dy
y + dz

z = 0. Then integrating, we get
log(xyz) = log c1.

i.e., xyz = c1, (1.90)

where c1 being integrating constant. Again, each ratio of (1.89) is given by

xdx + ydy − dz
x2(y2 + z) − y2(x2 + z) − z(x2 − y2)

=
xdx + ydy − dz

0
⇒ xdx + ydy − dz = 0

Integrating, we get,
x2 + y2 − 2z = c2 (1.91)

c2 being an integrating constant. Here the integral surface contains the straight line x + y =

0, z = 1. Now putting x = t, y = −t and z = 1 in (1.90) and (1.91), we get, c1 = −t2 and
c2 = 2t2 − 2. Eliminating t between the two , we get, 2c1 + c2 + 2 = 0. Putting the value of c1 and
c2 from (1.90) and (1.91), we get the required integral surface as x2 + y2 + 2xyz − 2z + 2 = 0.
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Example 1.39 Solve: dx
2y(z−3) =

dy
2x−z = dz

y(2x−3) which passes through the circle x2 +y2 = 2x, z = 0.

Solution : We have
dx

2y(z − 3)
=

dy
2x − z

=
dz

y(2x − 3)
(1.92)

From the first and last part of (1.92), we get, dx
2(z−3) = dz

2x−3 ⇒ (2x − 3)dx − 2(z − 3)dz = 0. Then
integrating, we get

x2 − 3x − z2 + 6z = c1, (1.93)

c1 being an integrating constant. Again each ration of (1.92) is equal to
1
2 dx+ydy−dz

y(z−3)+y(2x−z)−y(2x−3) =
1
2 dx+ydy−dz

0 ⇒ 1
2 dx + ydy − dz = 0 and again integrating we get,

x + y2 − 2z = c2, (1.94)

c2 being an integrating constant. Adding (1.93) and (1.94), we get, x2 + y2 − 2x − z2 + 4z =

c1 + c2 ⇒ c1 + c2 = 0, (using z = 0, x2 + y2 = 2x). After that putting the value of c1 , c2 from (1.93)
and (1.94), we get the required integral surface as x2 + y2 − z2 − 2x + 4z = 0.

1.10 Multiple Choice Questions

1. Consider a system of first order differential equations ẋ(t) = x(t) + y(t), ẏ(t) = −y(t). The
solution space is spanned by
(a) [0, e−t]T and [et, 0]T (b) [et, 0]T and [cosh t, e−t]T [NET(Dec.)MA-2017]
(c) [e−t, −2e−t]T and [sinh t, e−t]T (d) [et, 0]T and [et − e−t

2 , e−t]T

Ans. (c) and (d).
Hint. Eigenvalues λ = −1, 1, and eigenvectors V1 = (1, −2)T, V2 = (1, 0)T so general
solution is [x, y]T = k1[et, 0]T + k2[e−t, −2e−t]T. Taking k2 = 1, k1 = 0; k1 = 1

2 , k2 = − 1
2 and

k1 = 1, k2 = 0; k1 = 1, k2 = 1
2 .

2. Let y1 and y2 be twice differentiable functions on a interval I satisfying the differential
equations y′1 − y1 − y2 = ex and 2y′1 + y′2 − 6y1 = 0. Then y1(x) is
(a) c1e−2x + c2e3x − 1

4 ex (b) c1e2x + c2e−3x − 1
4 ex (c) c1e−2x + c2e−3x − 1

8 ex

(d) c1e3x + c2e−2x − 1
4 ex [JAM MA-2008]

Ans. (b)

3. Consider the system of ODE dY
dx = AY, Y(0) =

(
2
−1

)
where A =

(
1 2
0 −1

)
and Y(x) =

(
y1(x)
y2(x)

)

NET(MS): (June)2012
(a) y1(x)→∞ and y2(x)→ 0 as x→∞
(b) y1(x)→ 0 and y2(x)→ 0 as x→∞
(c) y1(x)→∞ and y2(x)→ −∞ as x→ −∞
(d) y1(x)→ −∞ and y2(x)→∞ as x→ −∞
Ans. (a) and (c).
Hint. Here the eigenvectors are [1, 0]T and [1,−1]T corresponding to the eigenvalues
−1, 1. So the general solutions are y1(x) = Aex + Be−x and y2(x) = −Be−x. Using the given

initial condition Y(0) =

(
2
−1

)
, we have y1(x) = ex + e−x and y2(x) = −e−x. Hence the result.
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4. Let Y(t) =

(
y1(t)
y2(t)

)
satisfy dY

dt = AY, t > 0, Y(0) =

(
0
1

)
where A is a 2 × 2 constant ma-

trix with real entries satisfying trace A = 0 and det A > 0. Then y1(t) and y2(t) both are
NET(MS): (Dec.)2012
(a) monotonically decreasing functions of t.
(b) monotonically increasing functions of t.
(c) oscillating functions of t.
(d) constant functions of t.
Ans. (c).

5. Consider the first order system of linear equations dX
dt = AX where A =

(
3 2
−2 −1

)
and

X(t) =

(
x1(t)
x2(t)

)
. Then NET(MS): (Dec.)2011

(a) the coefficient matrix A has a repeated eigenvalue λ = 1.

(b) there is only one linearly independent eigenvector X1 =

(
1
−1

)
.

(c) the general solution of the ODE is (aX1 − bX2)et, where a and b are arbitrary constants

and X1 =

(
1
−1

)
, X2 =

(
t

1
2 − t

)
.

(d) the vectors X1 and X2 in the option (c) given above are linearly independent
Ans. (a), (b), (c) and (d).

6. The general solution
(
x(t)
y(t)

)
of the system

ẋ = −x + 2y

ẏ = 4x + y

is given by GATE(MA)-04

A)


C1e3t − C2e−3t

2C1e3t + C2e−3t B)


C1e3t

C2e−3t C)


C1e3t + C2e−3t

2C1e3t + C2e−3t D)


C1e3t − C2e−3t

−2C1e3t + C2e−3t

Ans. A)

7. Let A =


−2 1 0
0 −2 1
0 0 −2

 , x(t) =


x1(t)
x2(t)
x3(t)

 and |x(t)| =
√

(x2
1(t) + x2

2(t) + x2
3(t)). Then any

solution of the first order system of the ordinary differential equation NET(JUNE)-16

ẋ(t) = Ax(t), x(0) = 0

satisfies
(a) lim

t→∞
|x(t)| = 0 (b) lim

t→∞
|x(t)| = ∞ (c) lim

t→∞
|x(t)| = 2 (d) lim

t→∞
|x(t)| = 12.

Ans. (a).

8. Let a, b ∈ R. Let y = (y1, y2)
′

be a solution of the system of equations

y
′
1 = y2, y

′
2 = ay1 + by2
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Every solution y(x)→ 0 as x→∞ if GATE(MA)-08
A) a < 0, b < 0, B) a < 0, b > 0, C)a > 0, b > 0 D) a > 0, b < 0
Ans. A)

9. The system of ODE

dx
dt

= (1 + x2)y, t ∈ R
dy
dt

= −(1 + x2)x, t ∈ R
(x(0), y(0)) = (a, b)NET(MS)(Dec) − 2014

has a solution
(a) only if (a, b)=(0, 0) (b) for only (a, b) =∈ R ×R
(c) such that x2(t) + y2(t) = a2 + b2 for all t ∈ R (d) such that x2(t) + y2(t)→∞ as t→∞
if a > 0 and b > 0.
Ans. (b) and (c).

10. Let k be a real constant. The solution of the differential equations dy
dx = 2y + z and dz

dx = 3y
satisfies the relation
(a) y − z = ke3x (b)3y + z = ke3x

(c) 3y − z = ke3x (d) y + z = ke3x [VU(CBCS)2018; JAM CA-2008]
Ans. (b)

11. If y′1(x) = 3y1(x) + 4y2(x) and y′2(x) = 4y1(x) + 3y2(x) then y1(x) is
(a) c1e−x + c2e7x (b)c1ex + c2e7x

(c) c1e−x + c2e−7x (d) c1ex + c2e−7x [VU(CBCS)2018; JAM CA-2006]
Ans. (a)

12. Let (x(t), y(t)) satisfy for t > 0
dx
dt = −x + y, dy

dt = −y, x(0) = y(0) = 1.
Then (x(t)) is equal to
1. e−t + ty(t) 2. y(t) 3. e−t(1 + t) 4. −y(t) [NET-DEC-2016]
Ans: 1, 3.

13. The general solution of

y +
dz
dx

= 0

dy
dx
− z = 0

is given by GATE(MA)-05

A)


y = αex + βe−x

z = αexβe−x B)


y = α cos x + β sin x
z = α sin x − β cos x

C)


y = α sin x − β cos x
z = α cos x + β sin x

D)


y = αexβe−x

z = αex + βe−x

Ans. C)

14. The general solution of dx
z =

dy
0 = dz

−x is given by
A) y = c1, x2 + z2 = c2 B) y + x = c1, x2 + z = c2 C) x = c1, x + z2 = c2 D)
y2 + x = c1, x + z = c2

Ans. A)
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1.11 Review Exercises

1 Let A be a 3×3 matrix with real entries. If three solutions of the linear system of differential

equations ẋ(t) = Ax(t) are given by


et − e2t

−et + e2t

et + e2t




−e2t − e−t

e2t − e−t

e2t + e−t

 and


e−t + 2et

e−t − 2et

−e−t + 2et

. Then

the sum of the diagonal entries of A is equal to −−? GATE(MA):2018
Ans. 2.Hint. The independents solutions are e−t, et, e2t. So eigenvalues are−1, 1, 2.Hence
the sum of the diagonal entries of A is equal to λ1 + λ2 + λ3 = −1 + 1 + 2 = 2.

2 An nth order ODE is equivalent to a system of n first order ODEs.
3 Define an initial value problem for a first order system. Reduce an initial value problem

for an n−th order ODE to that of an equivalent n first order system.
4 Let f be a vector-valued function defined for (t, x) in a set S with t real, x ∈ <n.

(a) Show that f is continuous at a point (t0, x0) in S if and only if

||f(t, x) − f(t0, x0)|| → 0,

as 0 < |t − t0| + ||x − x0|| → 0.
(b) Show that f satisfies a Lipschitz condition in S if and only if each component of f
satisfying a Lipschitz condition in S.

5 Show that f(x,y) = (7x + 6y1, y1 + y2) on S : { |x| < ∞, |y| < ∞} satisfying a Lipschitz
condition.

6 The system of n linear simultaneous ordinary differential equations is the form of

ẋ1(t) = a11(t)x1(t) + a12(t)x2(t) + · · · + a1n(t)xn(t) + f1(t)

ẋ2(t) = a21(t)x1(t) + a22(t)x2(t) + · · · + a2n(t)xn(t) + f2(t) (1.95)
...

...
...

ẋn(t) = an1(t)x1(t) + an2(t)x2(t) + · · · + ann(t)xn(t) + fn(t)

and subject to the

xi(t0) = xi,0, for i = 1, 2, · · · ,n. (1.96)

Suppose the coefficients ai j, (i, j = 1, 2, · · · ,n) and the functions fi, (i = 1, 2, · · · ,n) are
continuous on the interval [a, b]. Then prove that the problem (1.95) with (1.96) has a
unique solution (x1(t), x2(t), · · · , xn(t)) in [a, b].

7 Show that all solutions with values in R2 of the following system exist for all real t :

x′ = a(t) cos x + b(t) sin y,

y′ = c(t) sin x + d(t) cos y,

where a, b, c, d are polynomials with real coefficients.
Hint. Apply the Theorem 1.4.

8 Consider the problem

x′ = 3x + tz,

y′ = y + t2z

z′ = 2tx − y + etz.
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Show that every initial value problem for this system has a unique solution which exists
for all real t.
Hint. Apply the Theorem 1.4.

9 Let q be a real valued continuous function on [−a, a]. Then show that the initial value
problem

d2x
dt2 + λ2x = q(t)x, (λ ≥ 0), x(0) = 0,

x(0)
dt

= 1

has a solution on [−a, a].
Hint. Apply the Theorem 1.6.

10 Show that all real-valued solutions of the equation

d2x
dt2 + sin x = b(t)

where b is continuous for −∞ < t < ∞, exist for all real t.
11 Let a1, b1, a2, b2 ∈ < Show that the condition a2b1 > 0 is sufficient but not necessary for

the system. dx
dt = a1x + b1y and dy

dt = a2x + b2y to have two linearly independent solutions
of the form x = c1eλ1t , y = d1eλ1t and x = c2eλ2t , y = d2eλ2t with λ1, λ2, c1, d1c2, d2 ∈ <
JAM(MA)-2008

12 Find the general solutions for the system

dy1

dt
= 3y1 + y2

dy2

dt
= y1 + 3y2

Hint. The eigenvectors and eigenvalues of

A =

(
3 1
1 3

)

are λ1 = 4 with

x1 =

(
1
1

)

and λ2 = 2 with

x2 =

(
−1
1

)

Ans. The general solution is

y =

(
y1
y2

)
= c1

(
1
1

)
e4t + c2

(
−1
1

)
e2t.

13 Find the solution for the system of differential equations

dy1

dt
= −3y1 + 2y2,

dy2

dt
= −2y1 + 2y2

Ans. The solution is

y = c1

(
1
2

)
et + c2

(
2
1

)
e−2t
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14 Find the solution for the system

dy1

dt
= 3y1 + y2,

dy2

dt
= y1 + 3y2

Ans. The solution is

y =

(
y1
y2

)
= c1

(
1
1

)
e4t + c2

(
−1
1

)
e2t.

Solve the following system of simultaneous equations
(D stands for d

dt ).
15 Dx − 7x + y = 0, Dy − 2x − 5y = 0.

Ans. x = e6t(A cos t + B sin t), y = e6t((A − B) cos t + (A + B) sin t).
16 Find the general solutions for the system

dy1

dt
= 2y1 − y2,

dy2

dt
= −4y2

Ans. The general solution is

y =

(
y1
y2

)
= c1

(
1
0

)
e2t + c2

(
1
6

)
e−4t.

17 Find the solution of
dy1

dt
= −y1 − 2y2,

dy2

dt
= 2y1 − y2

Ans. The general solution is

y =

(
r cos 2t
r sin 2t

)
e−t

18 Solve: dx
dt = ny −mz, dy

dt = lz − nx, dz
dt = mx − ly

Ans. x2 + y2 + z2 = c1, lx2 + my2 + nz2 = c2, lx + my + nz = c3.

19 If x(t) and y(t) are the solutions of the system dx
dt = y and dy

dt = −x with initial condition
x(0) = 1 and y(0) = 1 then find the value of x(π2 ) + y(π2 ). GATE(MA)-2017
Ans. 0.

20 (D2 − 4D + 4)x − y = 0, (D2 + 4D + 4)y − 25x = 16et.
Ans. x = c1e3t + c2e−3t + c3 cos t + c4 sin t − et, y = c1e3t + 25c2e−3t + (3c3 − 3c4) cos t + (3c4 +

4c3) sin t − et.
21 Solve: (D2 +1)x+ (D+1)y = t, 2x+ (D+1)y = 0, given that x(0) = y(0) = 0 and Dx(0) = −5.

B.U(Hons.)-1999
Ans. x = −2et + 2e−t − t, y = 2(et − 2te−t + t − 1)

22 Dx + 4x + 3y = t, Dy + 2x + 5y = et. [ C.H,-1988]
Ans. x = c1e−2t + c2e−7t − 31

196 + 5
14 t − 1

8 et, y = − 2
3 c1e−2t + c2e−7t − 9

98 − 1
7 t + 5

24 t.
23 Obtain the G.S of the following system of differential equations: Dx = x + 2y, Dy =

4x − 5y + e3t. JAM(MA)-2010
Ans. x = c1e3t + c2e−3t + 1

3 te3t and y = (c1 + 1
6 )e3t − 2c2e−3t + 1

3 te3t.
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24 Show that the integral of the equations Dx + 2y = 0, Dy = x is given by x2 + y2 + 2c = 0.
C.U(Hons.)-1989

25 Solve: Dx + 5x + y = et, Dy − x + 3y = e2t. [ C.H,-1993, K.U.-2002]
Ans. x = (c1 + c2t)e−4t + 4

25 et − 1
36 e2t, y = −(c1 + c2 + c2t)e−4t + 1

25 et − 7
36 e2t

26 Solve: (D + 2)x + (D − 1)y = 3(t2 − e−t), (2D − 1)x − (D + 1)y = 3(2t − e−t). IAS 2003
Ans. x = c1 cos t + c2 sin t + t2 + e−t, y = 1

2 (3c2 + c1) cos t + 1
2 (c2 − 3c1) sin t + 2e−t − t2.

27 Solve: d2x
dt2 − dy

dt = 2x + 2t, dx
dt + 4 dy

dt = 3y,
Ans. x = (c1 + c2t)et + c3e−

3t
2 − t, y = (3c2 − c1 − c2t) − 1

6 c3e−
3t
2 − 1

3 .

28 Solve: d2 y
dt2 − 16x = t, d2x

dt2 − y = 1, given that y = 0, x = 0; dx
dt = 1, dy

dt = − 1
4 at t = 0.

Ans. x = 1
16 (3e2t − e−2t) + 9

32 sin 2t− 1
8 cos 2t− 1

16 t, y = 1
4 (3e2t − e−2t)− 9

8 sin 2t + 1
2 cos 2t− 1.

29 Solve the following initial value problem: Dx + Dy − 2y = 2 cos t, Dx − Dy − 2x =

4 cos t, given that x = y = 0 at t = 0.[ CU(H) 2015]
Ans. x = 2 cos t(et − 1) + sin t, y = sin t(1 − 2et).

30 Solve : d2x
dt2 − 2 dy

dt − x = et cos t, d2 y
dt2 + 2 dx

dt − y = et sin t, .
Ans. x(t) = (c1 + c2t) cos t + (c3 + c4t) sin t + et

25 (4 sin t − 3 cos t), y(t) = (c3 + c4t) cos t −
(c1 + c2t) sin t − et

25 (4 cos t + 3 sin t).
31 Solve: tDx + 2(x − y) = t, tDy + x + 5y = t2.

Ans. x(t) = c1t−3 + c2t−4 + 3t
10 + t2

15 , y(t) = − c1t−3

2 − c2t−4 − t
20 + 2t2

15 .

32 Find all solutions of the system ẋ = A(t)x + f (t) with initial conditions x(0) = [0, 1, −1]T

where


x1
x2
x3

, A(t) =


0 1 1
1 0 0

te−t te−t 1

 and f (t) =


et

0
1

.

Ans. x1(t) = (
3
4

+
1
2

t)et − 3
4

e−t

x2(t) = (
1
4

+
1
2

t)et +
3
4

e−t

x3(t) = 3et − t2 − 3t − 4.

33 Find the general solution of dx
cy−bz =

dy
az−cx = dz

bx−ay [ Ans. φ(ax + by + cz, x2 + y2 + z2) = 0]

34 Find the general solution of xdx
y2z =

dy
xz = dz

y2 [Ans. φ(x2 − z2, x3 − y3) = 0]

35 Find the general solution of dx
2xz =

dy
2yz = dz

z2−x2−y2 [ Ans. φ( x
y ,

z2+(x+y)y
y ) = 0 ]

36 Find the general solution of dx
x(x+y)+az =

dy
y(x+y)−az = dz

z(x+y) [ Ans. x2 − y2 − 2az = φ( x+y
z )]

37 Find the general solution of dx
x2−y2−z2 =

dy
2xy = dz

2xz . [ BU(H) 99]

Ans. φ( x2+y2+z2

z ,
y
z ) = 0.

38 Find the general solution of dx
cos(x+y) =

dy
sin(x+y) = dz

z .

Ans. z
√

2 cot
( x+y+ π

4
2

)
= φ

( cos(x+y)+sin(x+y)
ex−y

)
.

39 Find the general solution of dx
x(2y4−z4) =

dy
y(z4−2x4) = dz

z(x4−y4) .

Ans. x4 + y4 + z4 = φ(xyz2).
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40 Find a fundamental matrix for the system

dX(t)
dt

=


1 1 0
0 1 0
0 0 1

 X(t).

Ans. Φ(t) =


et 0 tet

0 0 et

0 et 0

 .

41 Find a fundamental matrix for the system

dy1

dt
= y1 + y2,

dy2

dt
= y1 + y3,

dy3

dt
= y3.

Find also the solution.

Ans. Φ(t) =


et tet t2et

2
0 et tet

0 0 et

 .

The solution is y1(t) = Aet + Btet + C t2et

2 , y2(t) = Aet + Btet, y3(t) = Aet.
42 Find the fundamental matric and the solution x(t) such that x(0) = [3 1]T for the system.

dx1

dt
= x1 − 2e−tx2,

dx2

dt
= et − x2.

Ans. Φ(t) =

(
2 e−t

et 1

)
and x(t) =

(
4 − e−t

2e−t − 1

)

43 Solve : dx
y2+yz+z2 =

dy
z2+zx+x2 = dz

x2+xy+y2 .

Ans. (xy + yz + zx)2 − (x2 + y2 + z2)2 = φ( y−x
z−y ).

44 Solve : dx
x2+y2 =

dy
2xy = dz

z(x+y) . [ BU(H) 2015]

Ans. (x − y)−1 − (x + y)−1 = φ( (x+y)
z ).

45 Solve : dx
x(x2+3y2) =

dy
y(y2+3x2) = dz

2z(x2+y2) .

Ans. (x + y)−2 − (x − y)−2 = φ( (xy)
z2 ).
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