A waveguide is an electromagnetic feed line used
in microwave communications, broadcasting,
and radar installations. A waveguide consists of
a rectangular or cylindrical metal tube or pipe.
The electromagnetic field propagates lengthwise.

Waveguides are most often used with horn
antenna s and dish antenna s.

An electromagnetic field can propagate along a
waveguide in various ways. Two common modes
are known as transverse-magnetic (TM) and
transverse-electric (TE). In TM mode, the
magnetic lines of flux are perpendicular to the
axis of the waveguide. In TE mode, the electric
lines of flux are perpendicular to the axis of the
waveguide. Either mode can provide low loss and
high efficiency as long as the interior of the
waveguide is kept clean and dry.

To function properly, a waveguide must have a
certain minimum diameter relative to the
wavelength of the signal. If the waveguide is too
narrow or the frequency is too low (the
wavelength is too long), the electromagnetic
fields cannot propagate. At any frequency above
the cutoff (the lowest frequency at which the
waveguide is large enough), the feed line will
work well, although certain operating
characteristics vary depending on the number of
wavelengths in the cross section.
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Abstract. In a planar regular optical waweguide, propagation of polarized
monochromatic electromagnetic radiation obeys a law following from the Maxwell
equations. The Maxwell equations in Cartesian coordinates associated with the
winvegnide geometry can be written as the two independent systems of equations:
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Each of the systems can be transformed to a second order ODE for the lead-
ing component and two other equations for straightforward computation of the
complementary electromagnetic field components. In doing so, the boundary con-
ditions for Maxwell's equations are reduced to two pairs of boundary conditions
for obtained equations. In addition, the asymptotic conditions hold for each class
of wavegnide modes, Thus, the problem of description of a complete set of modes
in a regular planar waveguide is formulated in terms of the eigenvalues problem
for the essentially self-adjoint second order differential operator:

2y

~a + V (2) v = K.

For the operator, we find some results about its spectrum, complete sets of so-
lutions, and diagonalization by an isometric isomorphism (generalized Fourier
transformation); new basis functions are related to initial ones by simple trans-
formation formulas. The eigenvalues problem is equivalently reduced to the two
problems (left and right) of the one-dimensional potential scattering theory by
projection on the two branches of the continuous spectrum.

Keywords: waveguide propagation of electromagnetic radiation, equations of
waweguide modes of regular wavegnide, guided modes, radiation modes, a com-
plete set of modes of a planar waveguide.
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1. Introduction

To deseribe propagation of eleetromagnetic radiation in integrated optical waveg-
wides by the coupled-wave method [1, 2], by the comparison-of-waveguides method [3,
A1, or by the incomplete Galerkin method [5, 6], we need to know a complete sys-
tem of waveguide modes of o regular planar wavegnide [T, 8] and be able to work
with them, In this work we consider the special, but the most widespread case of
i multilaver waveguide.

There are the three types of waveguide modes in a regular planar optical waveg-
mide: guided modes, substrate radiation modes, and cover radiation modes, The
regular wavegnide consists of a dielectric waveguide laver (or a few ones) of refrac-
tive index np (or npy, o gy ) and the dielectrie eladding with smaller refraction
indices: n, in the substrate layer and n, in the cover layer. We will use Cartesian
coordinates associated with the wavegnide geometry, The waveguide laver thick-
ness, sav d, is about of the monochromatic electromagnetic radiation wavelength,
while thicknesses of the substrate and cover layer are supposed to be much greater
and, in our model, will be considered as infinite quantities.

The mathematical model of light propagation in a waveguide consists of the
Maxwell equations supplemented by the matter equations and boundary conditions.
In the coordinates adapted to the wavegnide geometry as in Figure 1, the Maxwadl
equations can be split into two independent sets for the TE and TM polarizations.
Their solutions are, respectively,

E, (x5 z1) = E, (x)exp {iwt — iz}

and
H, (x,y,2t) = H, (x) exp {iwt — iz},

where w is the angular frequency, s the phase delay coetiicient of the wavegnide
mode, o, y, = are space dimensionless coordinates, and the functions E, (r) and
H,(x) for TE and TM modes, respectively, are determined by the corresponding
eguations

d*E

* 4 Y
—rﬁFjE'i'” [I}E"—lffyn
IF!"H ¥ 12
40’ (1) H, = H,

Both equations for the modes can be written in the more customary form

d? o

— —— (ko) + V (2) ) (k,x) = K2 (K, 2). (1)
i
Here V() = —n?(x) is a piecewise constant function (constant in each of the
layar), k% = =% is the spectral parameter, and ¢ (x) = E, (x) or H, (2).
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Figure 1: Wawgnide is formed by media 1-3. The figure indications are: 1 is a
framing medivm or cover layer (air) with refractive index n.; 2 s a waveguide layer
(film) with a refractive index ny: 3 is a substrate with refractive index n,; d is the
thickness of the waveguide layer. Film and substrate are homogeneous in the y and
= directions. the substrate is usually much thidker than the film.

2. Formulation of the problem

Assumptions:

e A planar dielectric waveguide consists of homogeneous lavers of isotropic ma-
terials, and the boundaries between the laver media are ideal and parallel to
the ry plane.

e Electromagnetic radiation propagates in the longitudinal horizontal direction
(along the z-axis) and is invariant along the transverse horizontal direction
(along the y-axis).

e Electromagnetic radintion in the waveguide is monochromatic (harmonic time
dependence).

e Electromagnetic radiation, for simplicity, is assumed to be linearly polarized.

The Maxwell equation in Cartesian coordinates associated with the waveguide
geometry has the form (in the Gaussian units)

| D 108 N
F'!'.h'H = FW‘ T HfE = -Fﬁ. {‘]'.I
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Waveguide modes of a planar optical wavequide AT

andd can be split into the two independent sets of lnear ordinary differential equia-

Homs - on. oL | OE | OE
i f [ [y .
=1k -E = - v = v :
o i ! H, ikgpe Oz H, ikopt O (3)
OF, O oy g\ OH, p_ 1 0H, i

e ihr ikyz 8z 7 tkoz O
where b, = w/ec is the vaenum wave number, ¢ is the speed of light in vacuum,
= and g oare, respectively, the dielectric constant and magnetic permeability, and
n = epis the squared refractive index of a medinm. Iu chosen coordinates, the
boundary conditions

E'-'( =B H-" . H”| (5)
I 1 2
can be reduced to those for, respectively, TE and TM modes:
E), = E,l,. H = Hl,. (6)
H),=H,). El| =E./l. (7)

Solutions of the equations (3)-(6) and (4)-(7) vield vertical (along & axis) distri-
butions of electromagnetic field for TE and TM modes, respectively. As functions
of all the spacetime eoordinates, electromagnetie fields of the modes can be written

in the form p p
(” ){r voat) = ( 3 )lriexr}{rwf—d.yi 3 (s)

Transforming (3) and (4) to the form

B, 4 AN ey _ L dE -
gpr THe(ep = ) By (#) =0, H.= ik d;. H, = _uL"' (9)

d (1dH, 4 - R 4
€ (5 4 ) + k2 (ep— F)Hyl2) =0, E.= ~ike Br E, = :Hl,. (10)

both the sets can be written in the more customary form

e

~ (ky )+ V(x) g (k,2) = Ko (k,2). (11)

Here V (B) = —n® (kyr) = —= (kyr) g is a piecewise constant function (constant in
each of the layer), & = =3 is the spectral parameter, ¢ (¥) = E, (x) or H, (1),
and 7 = 27(x/Ay) is a dimensionless variable. Later on we use thc numtmn T
instead of the .

The boundary conditions (6) and (7) hold for the function o (&) and its “deriva-
tive’
dE, () o I dH, ()

o) = dr n'(r)  dr

Scanned with CamScanner



s0 that
ﬂr|1 - ﬂl'luc t‘!*lj — ‘Ji:e: {12]

The problem of finding wavegnides modes is thus reduced to the problem (11)-
(12) with a potential V" (x) for eigenwalues &k and eigenfunction o (&, r) obeving the
asymptotic conditions (Figure 2)

Vi) —Vo, Vi) — V.. (13)

Tt ] F e

Figure 2: A schematic diagram of the potential.

In the problem (11) (13), the operator spectrum consists of;

e a finite number of eigenvalues of the discrete spectrum k; = in; @ &k €
(minV (), min (V.. V,)) and the corresponding eigenfunctions (guided modes);

e o continnous nondegenerate spectrum ko @ K2 € (V2. ~¢) and the corre-
sponding generalized eigenfunctions (substrate radiation modes):

o a continmous nondegenerate spectrum k. @ A e (V. ) and the corre-
sponding generalized eigenfunctions (cover radiation modes).

In a multilayver waveguide with a piecewise constant potential V" (), solutions to
the problem (11)-(13) (in the notation of (9)-(10)) in the space of square integrable
functions, that is. in the case of discrete spectrum k; = in;, were considered in a
large number of research studies, both theoretical and computational. There are
basic studies [9, 10, 11] and reviews [12, 13, 14, 15, 16] on integrated optics devoted
to guided modes in waweguides. The pioneering [9. 10, 11] and recent works [17,
18, 19] on integrated optics are dewoted to numerical methods of constructing the
function «; (x) as a linear combination of a fundamental system of solutions of the
equation (11) in each of the lavers, with subsequent matching these functions at
the layver iterfaces according to (12).

Scanned with CamScanner



Planar dielectric waveguides

Planar (slab) waveguides ——
" . - -3 I .
are the basis of waveguides — 1 1l
- f’__,.,-'
used in integrated e
e

optoelectronics. The same
mathematical ideas can be
applied (with minor modifications) to circular
wavequides.

The waveguide consists of a semi-infinite slab
of dielectric materials with thickness d and
refractive index nq (the core) that is sandwiched
between two regions (the cladding) both of
refractive index ny, and where nq>ns.

A ray of light may propagate
down the core provided that
total internal reflection Grmr———————E
occurs at the core/cladding

interface.

this requires that:

G0deg > & >0,
Where

o, is the internal ray angle (from now on written

as 0)
In fact there are ‘infinite” AT |
number of rays, all slightly W ' l
displaced from each other, e
also propagating down the

by #
S . . ™ . |
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The total phase change is equivalent to:

2rmy

(JlH + BC}.‘._ = M[ﬂ}
0

Where
% is the wavelength of light in the medium

To determine the path of the light fromato b to
Cc using trigonometry:

AR = BCeos20

Thus

AB + BC = BC(1 + cos28)

Since

0520 = 2eo5°0 — 1

AB + BC = ?BCros’t

np = newn =d that is the thickness of the slab
So that

AR = BC = 2drost

The thickness of the slab determines the
number of modes or angles that light will
propagate at.

In order for the mode to propagate the total
phase change must be a multiple of 2m:

Araydenstd
Ao
2anyelens?

Ag

- 26(7) =2mx

= o(f) =mm

Where

m is an integer

So for each value of m there will be an angle 8,
that satisfies the equation

Each value of 8, (those >8 ) has a distinct
distribution of electric field across the guide.

This distribution is known as a mode. Depending
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In fact there are ‘infinite” TS -
number of rays, all slightly 77/ "% /|
displaced from each other, b

also propagating down the 74
guide. The dotted line that - 8
is perpendicular to the wave lines is the
wavefront of the propagating beam. The rays

represent lines drawn normally to the plane
wavefronts.

The wavefront FC intersects = “——<3
tow the upwardly traveling / ;
portions of the same ray at / i \/ |

&1

points A and C. Therefore
the phase at C and A must be the same or differ
by a multiple of 2m.

Otherwise there would be destructive
interference between out-of-phase waves and
the light will not propagate. It also requires very
specific angles 8 above the critical angle.

Consider the phase difference between A and C

There are two factors -the path length of AB +

BC -the phase change due to reflection at B and
C

We write the phase change resulting from
reflection simply as 6(8)

For perpendicular radiation ¢ (8) is 2 , for
parallel radiation ¢(8) = 2 8.
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11-6: Dielectric Waveguides

In the case of a metallic waveguide we assumed that there was no field in the
conductors. Therefore we needed to solve Maxwell's Equations only for the region
inside the cavity. Let us now consider the situation where we have an
clectromagnetic wave confined 1o a diclectric system whose medium has index of
refraction n; and which is surrounded by a region of index of refraction n,. We
requirc that n; > n; so that the process of confinement is due to total internal
reflection not reflection off a conducting surface. Thus the reflection theoretically is
totally lossiess whereas this is not so for a8 metal waveguide st ordinary
temperatures. However, the dielectric waveguide will lose encrgy due to absorption
in the medium.

Diclectric waveguides have increasingly important applications for modem
communications because of the emerging technology of fiber optics. Thus the study
of diclectric waveguides is of current interest because it is becoming the transmitter
of choice for infrared and visible frequencies. We have noted that coaxial cables are
effective up to 100 MHz Above that resistive Josses make it ineffective. We then
must go to waveguides which are effective into the 10 Gllz region. Again resistive
losses begin 1o take over. Our next option, therefore, is to use the dielectric
waveguides which are effective into the 10 THz region. Of more importance,
however, is the bandwidth capability of these devices. If we assume that a 5%
bandwidth is reasonable for each device we note that for coaxial cables this is 5
MHz, for waveguides this is 500 MHz, but for optical fibers this is 500 GHz. Since
the amount of data which can be transmitted is related to the bandwidth we can sec
that there is significant potential for optical fibers in communications is enormous,
Example 11-5: The Diclectric Slab

In a dielectric waveguide we need the solution of Maxwell's Equations in both
the internal and external dielectrics and use the appropriate continuity relations at
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Each value of 8, (those >8 ) has a distinct
distribution of electric field across the guide.
This distribution is known as a mode. Depending
on the mode there may a distribution that is
centered in the core or may have 2 spots, 4
spots etc when view in cross section.

When:e.is = : the mode is at cut-off

If
s, <o, . the mode is below cutoff resulting in
rapid attenuation and light will not be
propagated.

If

6. >4, : the mode is above cut-off which can
propagate

Mode Cut-off

The mode will be at cut-off if

2
—meosl.dg = wm

Since

cosfl, = (1 = 8in20)'"? = [t = (my/my)2)"7?

ainf, = (nyfn,)

Therefore mode cut-off occurs when;

Zridng ny 1"/
iy [,
Ao n

Or

r_ T
=Sm

Where

V is the normalized film thickness, normalized
frequency, or V parameter

D is the thickness of the waveguide
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Where

V is the normalized film thickness, hormalized
frequency, or V parameter

D is the thickness of the waveguide

Thus the mode shift depends on the relative
index of refraction of the materials and the
thickness of the wavequide. If you decrease the
thickness you decrease the number of modes
that can propagate.

The number of guided modes in a step-index
guide (N) is given by
N=1+int(2V/x)

Only one mode propagates if v<3, in this case i

is called a single mode guide.

d < 1
M 2(nind)?

Example
Find the maximum waveguide core thickness d
for a device withnq1 =1.48 and no = 1.46 and a
wavelength of 1 § m to achieve single mode
propagation.

1

< 3(1Lag1ag2) 2"
V < 2.06pm

d
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€; = Aysin my + A, cos 7,y (11-409)
We choose the conditions such that:
€; = Azycos 7,y (11-410)

is the description of the wave in the region, — b/2 < y < /2. This sohution makes
€y an even function with respect to the midplane of the slab.

Because we are under conditions of total internal reflection outside the dielectric
interface v < 0 and we ket 12 = — 2, Our solution is now:

¢, = Aye Y y> W2 (11411)

€, = Ay y< -2 (11412)
where:

F=x2- (11-413)

Equations 11-408 and 11413 place conditions on the range of values of k. For
example, for wave motion to exist inside the slab, we must have 4, > 0, Thus:
% —x2>0 (11-414)
and
xlﬁ:rhf (11-415)

Also for there to be a decaying field outside the slab, we must have 8 > 0.
Thus:

K1- >0 (11-416)
and the value of g lies in the range:
¥ <rg <ot (11-417)

Using Equations 11-39 through 11-43, we derive the fickds inside the diclectric
slab:

o= (rg 52) =0 (11-418)

&= (r %) = S rgAmsinmy= - S arsinqy  (11419)

€ =Ajcosmy (11-420)
. 1 " 3

Bo= -4 B P E WA snyy =1 B Asnny (11-421)

By =3 % FE=0 (11-422)

By =0 (11-423)

This above combination, the TM mode, and &, = A; cos 7,y, results in ficlds
which are known as the even TM modes. The combination, the TM mode, and
€; = A sin 7y, results in fields which are known as the odd TM modes. Odd and
cven combinations of the TE modes are also possible.

We now derive the conditions for wave transmission in the slab. We know that
the tangential component of &, which in our case is &,, is continuous across the
boundary. Thus, at y = b2:
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Application of Marwell's Equations: Guided Waves 615

Problem 11-28

Find the expression for the ficlds for the dielectric slab under the conditions that the
medium is air (n = 1.0) on onc side and 8 conductor on the other. The index of
refraction of the slab is n. Find an expression for the possible modes for this
waveguide and the cut-ofT frequency. Compare with the four possible modes of the
symmetric diclectric slab waveguide.

Example 11-6: The Circular Optical Fiber
We next discuss the more complicated example of an optical fiber. We will

assume that it is a circular cylinder and that it consists of a core of radius a and a
medium of dielectric constant n, surrounded by a cylindrical sleeve called cladding,
which has dielectric constant n,, as we have illustrated in Figure 11-15. We will

Figure 11-15: The Optical Fiber

consider only situations where n, is greater than n;. We find the forms of the waves
inside the fiber using the equations noted in Section 11-2, but we take into
cmmduthunl}tfuc!lluulrmmmmlmgmndmhﬂmm

€, = [xg G + % G] (11-447)
i[5y ¢, _ 0B
€= % 52w (11-448)
bod e Bonsi] o
Bp=ch |2+ L 5] (11-450)
Here ny is the index of refraction of the material and 4/ is given by:
v =n2% -x2 (11-451)

We have shown that €, and B, will be the solution to Bessel's Equation.
For the mside cylinder the general solution is: . _
€: = [AJm(11p) + BiNm(10)] [C1e™™ 4+ Dyei™é] eilmez<0  (11452)
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Application of Marwell's Equations: Guided Waves 613

Taking the limiting value of v, Equation 11-436 becomes:

Vind-1)%F ,=(m-£)r (11-437)

which allows us (o find the possible values for w,. Rearranging Equation 11-437 we

have:

we = 5. 2xc (11-438)
Thus:

ve =S § (11-439)

As an cxample suppose we have a glass shab of index of refraction 1.5 and
thickness 0.4 cm . The first cut-off frequency is given by:
_1 1 Ix10*myt _
Ve =3 V2251 4x10¥m —
PA Hz=67x 10 Hz=67GHz  (11-440)
We next wish (o find out the parameters of the wave at a frequency above
threshold. We are given the quantities: the thickness of the slab, b; the index of
refraction of the slab, ng; and the frequency of the signal we want 1o transmit, w.
What we do not know usually is the propagation constant, xg, and thus the
wavelength of the signal in the guide. We find this from Equation 11-431.

We have: , ,
(m3) +(s8) =@-n () (11-441)
where we have multiplied through by b2, Next we multiply Equation 11-432
ﬂruugh(hy the common factor of b2, getting:

P)e() = - (7) -

-wyR-0(g) -(F) e
where the last term comes from Equation 11-441.
We define a variable X as:
X = 15! (11-443)
and Equation 11-442, when rearmanged, becomes:

cot(X)= - 3 \/{:g—i}(g%)’-xw=
o /O _ (11-449)

= -dy¥ -1=F0 (11-445)

This equation does not have a solution determined by ordinary functions.
However, it can be solved by graphing the two functions. Thus we now plot F(X)
and cot (X) on the same sct of coordinates. The cotangent function consists of a
scrics of curves ranging from a value of cot(X) = co at X = 0; cot(X) = 0 ot %/2;
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patiafied ot point E i Fig 3. (The corresporiding poeinit sl
@ = 45" in Fig 1 is nol marked ) Flgure 3 also clearly
shows that & = 0" is now possible i the two points
marked Dy and Dy The corresponding angles of nci-
denee & and &y are determined by'"

sin®dys= ({in® + 1) = (0t - 8a¥ < 1)'3), (16)

where n = LN, a8 before.  For the Ge-alr interfaee n
= (.25, amd Eq. (160 pives ) = 1504° iwhich is alightly
above the critical angle & = 144" and &5 = JLOI"
A Ge, single-reflection, quarter-wave relarder can be de-
migned to operaie aldé 5 = 4291° ipoint Dy in Fig & with
acceplable angular sensitivity Standard silica-based
Wmmﬂﬂémwilﬁi
TiR=

A the angle of incidenee &, =&, , where 4 = & _
we can solve the following t=o equations:

(RS2« | D = o2,
(A& -1 W = daafd, a7
to obtain &, snd 4 in terms of 3y, only
Aomifme A V2
d,.=lw— dgail P18
Consequently, the reflection Jones matrix’ at & =&,
takes the simple form
ape A, 0 |
0 expl - f Al

The outside multiplier j in Eq (19 represents the
juarier-wave average phase shilt on reflection

R=y i1

3. EQUAL AVERAGE AND DIFFERENTIAL
PHASE SHIFTS

At the point F where the &, and d-versma-& curves inter-
sect in Fig 3, the average and dilferential refloction phase
phifts are eqgual,

‘-n 4I
l‘" *4'”"_' ﬂ'p h dl
4, =14, L20)

Equations (20), which are to our know mew, baar
some resemblance to the Abeles condition,” § « 4, or
4 = 24, which occurs at & = 45°. However, the angle
of incidence at which Eq (20} s satisfied = a function of N
given by

s @ = (N? & 1 ANTI 213

The derrvalion leading o Eq. (210, starting from Eqs id)
and (T}, is a bit lengthy and requires some patience, so il
is omiited here to save spare  Equation (21 has an ae
ceptable solution for & ouly if

win @ > winlg, = UN? (2

Based om Ege (21} and (2, an ssceplabile nontrivial
sofution'® of Eg. (20) exists only if

N>yl =172 2h

Val 21, No BAugus 2004/d Opi See Am A 1581

For the Oe-air interface N = 4, and Eq (21) gives &
= @1.02°, which precisely locates the peint F in Fig 1

4. LIMITING SLOPES OF THE A-versus<)
CURVE AT THE CRITICAL ANGLE
AND GRAZING INCIDENCE

By taking the derivative of bolh sides of Eq. i4) with re-
apect to & we ohiain

{inectiaz sty = (11 ~ Njtam® & + 2
[N sin & tan” &
b l.‘lr:ﬁlli- tll'lirl m'

The maximan dilferentinl reflection phase shifl 3 vecurs
at the angle &, where 004 « (1 By setting the nu-
merator of the righl-hand side of Eq. (24) equal to 0, we
(-2}

tan? & = JNT - ], 2%

sin® &, = 2N 4 1) o
Equations {113 and (26} leard to the conclusion that &_
= ¢, , an has already been noted in Section 27

AL ihe eritieal nngle, N sin d= 1, and the slope of the
Svariin- dourve i iafinite,

WA s = =, (27

s enn be seen from Eg (240 Similardy, by differentiation
of Eqa. (2) nnd (00, il can also be verified that

|M,J‘.l e, = mﬂ,ﬁl‘u,‘ =, {28

Therelore all phase shifts rise vertically with respect to &
at the critical angle  (The amgulor resolutlon wsed in
plotting Figs 1 and 3 does not muke this clear )

The limiting slope of the Aversus curve at groving
imcidence (d = 50°) is alen obinined from Eq. (240 as

| By e = —(2NNNE = 112
- =31l =7 -2emd. (MM

For large N, Wie liniting sloge of the A versus<d ewrve al
grazing tncldence in TTR approaches =2 For the (e - air
mierfare (N = 41, the limiting slope equals - 1.5565

ie huve also verified analytically that the second de-
rivalive of A with respect lod st graring incidence is 2ero,

(#*80d%) oper = 0 (0

Therelore, A bs nearly a linear fanction of & near grazing
incidence, as can be readily infereed from Fige 1 and 3
In terms of the prazing incidence anele

p= 00" — &, an
A ran be expressed as
A=201-n%n 12

The approximation in Eq, (32 s pood for small #, and gets
better as N increases.  For example, when s = 02508
= 4) amd # = 10¢, Eq (32 gives 4 = 18365%, which i
only 0.008" ghove the exact value predicted by Eq. (43
Equation {12 has potential application for describing
chanees in Uw stale of polarization of light that travels as
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Fig 1 TIK phose shifte 4, 4, &, and 3 ab the glas= air in-
terface N = 1.5 ploiied an lindions of the angle of incidence &
batwiven the eridical angled, = aresind®30 = 41LH1° and grazing
incidence & = WP Quartor-wave phase shilts are attamel al
pints A, B, and C wherethe line 4 = 90 imtersects the curves of
A, & . andd, ot anghw of meidencs denated by &, , &, and 4,
respetvely

1] T ; - [ [] L] ; [ -
Aelractive indes Rato N
2 Theow unghes of meodmee 4.8, ol &, ot which the
:.*-.:H average TIR phose shifie [Eqe (9i=i11)] are quarter-
wirve are plidled as fand sons of the refradive indes st N

—— ]

E I.ﬁﬂﬂﬂnhﬂlmﬂhlnﬁtnfhmihh
tween the critical angle & = arcsini@i) = 41.81° and
grazing incidence & = X Quarterwave phase shifts
are aitained Ilpd'ﬂhh.ﬂ.ﬂlﬂwbuﬂlhﬁuﬂﬂ
- Hrhmuﬂlhrmw-dq.,ﬁ‘mdﬁ,ulmdud
incidence denoted by &, &, and & , respectively
Expressions for the angles &, and &, for any N wre
rendily obtained by selting the left-hand sides of Eqs. (2)
and (3) equal to 1. The correspanding expression for &,
|s abtained by setting the denominator of the right-hanil
side of Eq. (7) equal to 0. The results are listed below:

nintd, = (N? 4+ TN + 1), ()
sin® & = IN? = 1LWVENT), um
sint g, = BAN? + 1) {an

LM A Arsam

Figure 2 shows the three angles &, , &, and &, plotted
as fanctions of N All angles approach 90° as X' tends to
1 and decrease monotonically as N i increased.  For
large N, & , approaches 45°, whereas &, and &, approach
i

It will be slivwn in Section 4 thai the angle &, for
quarter-wave average phase shuft given by Eq (111 is ex-
actly the sime os Lhe angle & _ sl which 3 b= maximim
fsee Eq. (26) below], (In Fig 1 the poak point C of the
Awversus- & curve lies vertically below point C)  Cune
ously, this also happens to be the angle of incidence at
which p- and s polarized light tunnel equally across u thin
uniform air gap between two hall-prisms of the same re-
fractive index under conditions of frustrated TIR*®

It is also af interest to caleulate 8, when 8, = /2, and
4, whend, = m/2 The results are readily obiained from
Eq 1Bk

tani 470 = UNS, § = o2

banl 4/ = N7, A= ok 2
Consequently, the differestial reflection phase shifts ot &,
and & are

Ald,) = | = — 2arctani UN?),

Ald,) = 2 aretani N = | o). (§ i1
From Eqs (130 it follows thal
Mdi = disd, (141

The equal differential reflection phase shifts are repre-
sentod by poltts A" and B' i Fig 1

The maximum differential reflection phase shift fat
point ) s given by*

tatl Ap @ = (N = 12N (1%

When N = 16, A . = 45.20° and the Jversus-éb curve
lies entirely helow the & = 90" line in Fig. 1 To achieve
quarter wave dilferential phase shift on single reflection
fie, A = 907, we must have N = (2 + 1 = 2414, ac
rondins to Eq. (150

Figure 3 |» similar to Fig 1 except that now N = 4,
which corresponds to the Ge=air interface i the infrared.
The Abela condition,” & = &, 0rd, = 24 at b= 45", Is

TR Prosss Shafts | Degresd)

Argse of incxtesce § (Degiees!

Fig & Asin Fig 1 axcopt thad N = 4, which tothe
T:-dﬂd-{uvinth-ﬂﬁd Thie sgnificance of thn marked
pustnts 1), Dy, K, and F is discussed in the text
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Phase shifts that accompany
total internal reflection
at a dielectric—dielectric interface
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The abwalute, average, and differentiol phase sdufls that p- and s-polarised light experioncs in tetal sternal
relloct imsey (TTRY Lhrmnmr it v Fibes Dot wr sy 1w Eramwsguarvnd onkia arm m—bt-r;"(hmmrlﬁnmh
of meybonie & Bp:uil.qﬂndwlmhMuamﬁmﬁlﬂunrﬂiﬁdmﬂmmﬂﬁhﬂmu’
the rvistive relradive indox N When the sverage phase shifl equals =% the differoai bl sellection phiome
ahifl 4 in maximum, and the relloction Jones matri smumes o smple form For ¥ > L the avetage and
difforovtial phose shifts are oqual dvence &, = 34,1 st o vertain anghe & thet i determined as a fumction of N
All physse shifbs riss with inlinde slope at the crtical angle  The Hmtog shope of the Aovermn s curvi ml

—2NHNT - 1 e P md, . where & in the critieal sngle wil

ﬂm.m (o SR D i ™ L sl e
1FA g%, e = 0, Therefare 3 in toihe graning ncidimoe: angle # = mmall i w
-.ulup-l.’h:s o %'-hww--h-mmram-dmnlmlh-u’l.ullndun

GAR® wid seours when N = 18077 Finally, several tech niquos are juosssitod i detsrmoing the relative
refractive imdim N by ustng TIH ellipaemetsy  © 2004 Optical Beciety of Americs
OIS vowken: SA0 D40, TH0 (960, 20 210, D60 5430, 26 GIT0

1. INTRODUCTION

The reflection of p- and s polarized light at the planar in-
terface hetworn two somi-infinite, homogeneous, Isotropic
meedln s poverned by the well-known Fresnel
eooflicienta !  When both media are transparent, the
phase shifts that accompany partial external or internal
reflection asswime the valuos of 0 or However, under
conditions of total internal reflection (TIR), st angles of
invidence & above the critical angle

oy, = arcsinm, i1
the phase shifts 4, §, and & = & — &, are nondrivial

and are given b
fan 5025 = NiNTsin® & — 11" Veon & 2
fani 87 = (NTuin® & - 1N em &), o

tani 472 = (NTsin® & — 1VYIN sdn dtand i
il

In Equ i1i-i4i,
N = NulN, (5h

i the bigh-te-low ratio of refractive indices of the media
ol incidenee and (evanescent) refraction, respectively WV
= i), andn = 16NV < |

1a addition to the differestial reflection plase ahifl A
twhich s measurable by ellipsometry’), we mtroduce (e
wverage phase shifi en reflection

d,.= 18, = A V2 6

Rased on Eqs (20 and (0 and the trigonometric identily
for the taneeni of the sum of two angles, we abiain

08T SO | FHELO5% 1 5. (W)

1 J Ope Bee Am A/Vol T1, No B/ Auguss 35004

T Prsss Shits (Degress)
] L}

tand, = [feomd N + NN gin® & - 1193)
[2 - inin® &N + 1)) i

From Eqe (2 and (30, we alwo obtain the follow ing wseful
relation between 4, andd, ,

tand /2 = NV lanl 870, (LY

whifely is valid for any interfivce (o given N ot any angle of
tncidenee in the range &, = &< 80°  Anether direct re
lation between 4 and 4, that ks valid st a given & inde-
pendent of N was previously published

Tn this paper we derive a number of interesting new re-
sults concerning the TIR phase shifts 4,, 4, 4, and &
I Section 2 we find the angles of incidenee at which these
phuse shifts are quarterwave (==2) and discuss their
significance.  Analogous to the Abeles condition” 4,
= 04 atd = 45, we investigate the condition 5, = A,
which is equivalent te 4 = 34, . inSection 3. In Section
4 the limiting slopes of the SA-versus-4 carve at the eritical
ungle and ot grazing incidence are oblained. 1n Seclion
6, the difference between the nngle of incidence &_ of
maximum A and the critionl angle & s obixined as »
function of N, and it & shown that this difference &

&, eannol exeved 958°  In Sectlon 6 we propose sev-
vral methods for recovering N basad on varioons fealioroes
of the Aversus-demrve Seetion 7 s a briel summary of
the paper,

2. QUARTER-WAVE PHASE SHIFTS IN
TOTAL INTERNAL REFLECTION

As n apecilic example, Fig 1 shows the phase shifts 4,
#,, &.nond 3 on TIR st the glass—air intesface (N

© B Optieal Society of America

AL A Arzam

Figure 2 shows the three angles &, &, and &, plottied
an functions of N. Al angles approsch 90° as N tends to
1 and decrease as N in increased.  For
nmwﬁ'é' approachies 45°, whereas &, and &, approsch

It will be shown m Section 4 that the angle &, for
quarter-wave average phase shift green by Eq, (11) 18 ex-
welly the sume as the angle &  of which A s maoscdmam
[wee Eq, (200 below]. Ia Fig | the peak point C° of the
Avermis- é curve Hes vertically below point C)  Curi-
ously, this alse happens to be the angle of incidence at
whiiich p- anid s polarized light tunpel equally across o thin
wnkform air gap betsween two half-prisms of the same re-
fractive ndex under conditions of frustrated TIR®®

1t s also ol interest to caleulate 8, when &, = =72, and

A, whend, = =/ The resulis are readily obtained from
T
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Refraction is generally accompanied by partial
reflection. When waves are refracted from a medium
of lower propagation speed to a medium of higher
propagation speed (e.g., from water to air), the angle
of refraction (between the refracted ray and the line
perpendicular to the refracting surface) is greater
than the angle of incidence (between the incident ray
and the perpendicular). As the angle of incidence
approaches a certain limit, called the critical angle,
the angle of refraction approaches 90°, at which the
refracted ray becomes parallel to the surface. As the
angle of incidence increases beyond the critical
angle, the conditions of refraction can no longer be
satisfied; so there is no refracted ray, and the partial
reflection becomes total. For visible light, the critical
angle is about 49° for incidence at the water-to-air
boundary, and about 42° for incidence at the
common glass-to-air boundary.

Details of the mechanism of TIR give rise to more
subtle phenomena. While total reflection, by
definition, involves no continuing flow of power

across the interface between the two media, the
Scanned with CamScanner



Total internal reflection (TIR) is the optical
phenomenon in which the surface of the water in a
fish-tank, viewed from below the water level, reflects
the underwater scene like a mirror, with no loss of
brightness (Fig. 1). In general, TIR occurs when
waves in one medium reach the boundary with
another medium at a sufficiently slanting angle,
provided that the second ("external”) medium is
transparent to the waves and allows them to travel
faster than in the first ("internal”) medium. TIR
occurs not only with electromagnetic waves such as
light and microwaves, but also with other types of
waves, including sound and water waves. In the case
of a narrow train of waves, such as a laser beam
(Fig. 2), we tend to describe the reflection in terms of
"rays” rather than waves. In a medium whose
properties are independent of direction, such as air,
water, or glass, each "ray” is perpendicular to the
associated wavefronts.limportance’]
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aistance rrom tne Interrace. 1ne ‘total rerection Is
indeed total if the external medium is lossless
(perfectly transparent), continuous, and of infinite
extent, but can be conspicuously less than total if
the evanescent wave is absorbed by a lossy external
medium (“attenuated total reflectance"), or diverted
by the outer boundary of the external medium or by
objects embedded in that medium (“frustrated" T| R).
Unlike partial reflection between transparent media,
total internal reflection is accompanied by a non-
trivial phase shift (not just zero or 180°) for each
component of polarization (perpendicular or parallel
to the plane of incidence), and the shifts vary with
the angle of incidence. The explanation of this effect

by Augustin-Jean Fresnel, in 1823, added to the
evidence in favor of the wave theory of light.

The phase shifts are utilized by Fresnel's invention,
the Fresnel rhomb, to modify polarization. The
efficiency of the reflection is exploited by

optical fibers (used in telecommunications cables
and in image-forming fiberscopes), and by

reflective prisms, such as erecting prisms for
binoculars.
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